283 research outputs found

    Observed luminosity spread in young clusters and Fu Ori stars: a unified picture

    Get PDF
    The idea that non steady accretion during the embedded phase of protostar evolution can produce the observed luminosity spread in the Herzsprung-Russell diagram (HRD) of young clusters has recently been called into question. Observations of Fu Ori, for instance, suggest an expansion of the star during strong accretion events whereas the luminosity spread implies a contraction of the accreting objects, decreasing their radiating surface. In this paper, we present a global scenario based on calculations coupling episodic accretion histories derived from numerical simulations of collapsing cloud prestellar cores of various masses and subsequent protostar evolution. Our calculations show that, assuming an initial protostar mass \mi \sim 1\,\mjup, typical of the second Larson's core, both the luminosity spread in the HRD and the inferred properties of Fu Ori events (mass, radius, accretion rate) can be explained by this scenario, providing two conditions. First, there must be some variation within the fraction of accretion energy absorbed by the protostar during the accretion process. Second the range of this variation should increase with increasing accretion burst intensity, and thus with the initial core mass and final star mass. The numerical hydrodynamics simulations of collapsing cloud prestellar cores indeed show that the intensity of the accretion bursts correlates with the mass and initial angular momentum of the prestellar core. Massive prestellar cores with high initial angular momentum are found to produce intense bursts characteristic of Fu Ori like events. Our results thus suggest a link between the burst intensities and the fraction of accretion energy absorbed by the protostar, with some threshold in the accretion rate, of the order of 10^{-5}\msolyr, delimitating the transition from "cold" to "hot" accretion. [Abridged]Comment: 23 pages, 5 figures, ApJ accepte

    Warm Extended Dense Gas Lurking At The Heart Of A Cold Collapsing Dense Core

    Get PDF
    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (~ 30 - 70 K), extended (radius of ~ 2400 AU), dense (a few times 10^{5} cm^{-3}) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, "warm-in-cold core stage (WICCS)", i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitutes a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.Comment: Accepted for publication in The Astrophysical Journal Letter

    L1448 IRS2E: A candidate first hydrostatic core

    Full text link
    Intermediate between the prestellar and Class 0 protostellar phases, the first core is a quasi-equilibrium hydrostatic object with a short lifetime and an extremely low luminosity. Recent MHD simulations suggest that the first core can even drive a molecular outflow before the formation of the second core (i.e., protostar). Using the Submillimeter Array and the Spitzer Space Telescope, we present high angular resolution observations towards the embedded dense core IRS2E in L1448. We find that source L1448 IRS2E is not visible in the sensitive Spitzer infrared images (at wavelengths from 3.6 to 70 um), and has weak (sub-)millimeter dust continuum emission. Consequently, this source has an extremely low bolometric luminosity (< 0.1 L_sun). Infrared and (sub-)millimeter observations clearly show an outflow emanating from this source; L1448 IRS2E represents thus far the lowest luminosity source known to be driving a molecular outflow. Comparisons with prestellar cores and Class 0 protostars suggest that L1448 IRS2E is more evolved than prestellar cores but less evolved than Class 0 protostars, i.e., at a stage intermediate between prestellar cores and Class 0 protostars. All these results are consistent with the theoretical predictions of the radiative/magneto hydrodynamical simulations, making L1448 IRS2E the most promising candidate of the first hydrostatic core revealed so far.Comment: 20 pages, 4 figures, to be published by Ap

    Simulations of protostellar collapse using multigroup radiation hydrodynamics. I. The first collapse

    Full text link
    Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodynamics. However, dust opacities which dominate extinction show large variations as a function of frequency. In this paper, we used frequency-dependent radiative transfer to investigate the influence of the opacity variations on the properties of Larson's first core. We used a multigroup M1 moment model in a 1D radiation hydrodynamics code to simulate the spherically symmetric collapse of a 1 solar mass cloud core. Monochromatic dust opacities for five different temperature ranges were used to compute Planck and Rosseland means inside each frequency group. The results are very consistent with previous studies and only small differences were observed between the grey and multigroup simulations. For a same central density, the multigroup simulations tend to produce first cores with a slightly higher radius and central temperature. We also performed simulations of the collapse of a 10 and 0.1 solar mass cloud, which showed the properties of the first core to be independent of the initial cloud mass, with again no major differences between grey and multigroup models. For Larson's first collapse, where temperatures remain below 2000 K, the vast majority of the radiation energy lies in the IR regime and the system is optically thick. In this regime, the grey approximation does a good job reproducing the correct opacities, as long as there are no large opacity variations on scales much smaller than the width of the Planck function. The multigroup method is however expected to yield more important differences in the later stages of the collapse when high energy (UV and X-ray) radiation is present and matter and radiation are strongly decoupled.Comment: 9 pages, 5 figures, accepted for publication in A&

    The enigmatic core L1451-mm: a first hydrostatic core? or a hidden VeLLO?

    Full text link
    We present the detection of a dust continuum source at 3-mm (CARMA) and 1.3-mm (SMA), and 12CO(2-1) emission (SMA) towards the L1451-mm dense core. These detections suggest a compact object and an outflow where no point source at mid-infrared wavelengths is detected using Spitzer. An upper limit for the dense core bolometric luminosity of 0.05 Lsun is obtained. By modeling the broadband SED and the continuum interferometric visibilities simultaneously, we confirm that a central source of heating is needed to explain the observations. This modeling also shows that the data can be well fitted by a dense core with a YSO and disk, or by a dense core with a central First Hydrostatic Core (FHSC). Unfortunately, we are not able to decide between these two models, which produce similar fits. We also detect 12CO(2-1) emission with red- and blue-shifted emission suggesting the presence of a slow and poorly collimated outflow, in opposition to what is usually found towards young stellar objects but in agreement with prediction from simulations of a FHSC. This presents the best candidate, so far, for a FHSC, an object that has been identified in simulations of collapsing dense cores. Whatever the true nature of the central object in L1451-mm, this core presents an excellent laboratory to study the earliest phases of low-mass star formation.Comment: 15 pages, 9 figures, emulateapj. Accepted by Ap

    Massive star formation: Nurture, not nature

    Full text link
    We investigate the physical processes which lead to the formation of massive stars. Using a numerical simulation of the formation of a stellar cluster from a turbulent molecular cloud, we evaluate the relevant contributions of fragmentation and competitive accretion in determining the masses of the more massive stars. We find no correlation between the final mass of a massive star, and the mass of the clump from which it forms. Instead, we find that the bulk of the mass of massive stars comes from subsequent competitive accretion in a clustered environment. In fact, the majority of this mass infalls onto a pre-existing stellar cluster. Furthermore, the mass of the most massive star in a system increases as the system grows in numbers of stars and in total mass. This arises as the infalling gas is accompanied by newly formed stars, resulting in a larger cluster around a more massive star. High-mass stars gain mass as they gain companions, implying a direct causal relationship between the cluster formation process, and the formation of higher-mass stars therein.Comment: 8 pages, accepted for publication in MNRAS. Version including hi-res colour postscript figure available at http://star-www.st-and.ac.uk/~sgv/ps/massnurt.ps.g

    SMA and Spitzer Observations of Bok Glouble CB17: A Candidate First Hydrostatic Core?

    Full text link
    We present high angular resolution SMA and Spitzer observations toward the Bok globule CB17. SMA 1.3mm dust continuum images reveal within CB17 two sources with an angular separation of about 21" (about 5250 AU at a distance of 250 pc). The northwestern continuum source, referred to as CB17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low luminosity Class0/I transition object (L_bol ~ 0.5 L_sun). The southeastern continuum source, referred to as CB17 MMS, has faint dust continuum emission in the SMA 1.3mm observations (about 6 sigma detection; ~3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 micron. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are less than 0.04 L_sun and 16 K, respectively. The SMA CO(2-1) observations suggest that CB17 MMS may drive a low-velocity molecular outflow (about 2.5 km/s), extending in the east-west direction. Comparisons with prestellar cores and Class0 protostars suggest that CB17 MMS is more evolved than prestellar cores but less evolved than Class0 protostars. The observed characteristics of CB17 MMS are consistent with the theoretical predictions from radiative/magneto hydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB17 MMS and to address more precisely its evolutionary stage.Comment: 33 pages, 11 figures, to be published by Ap

    Exploring the consequences of pairing algorithms for binary stars

    Get PDF
    Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments (see, e.g., Blaauw 1991, and references therein). Binarity is also a key ingredient in stellar population studies, and is a prerequisite to calibrate the binary evolution channels. In this paper we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as pairing functions. These pairing functions are frequently used by observers and computational astronomers, either for their mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. The mass ratio distribution and binary fraction derived from a binarity survey among a mass-limited sample of targets is thus not representative for the population as a whole. Neither theory nor observations indicate that random pairing of binary components from the mass distribution, the simplest pairing function, is realistic. It is more likely that companion stars are formed in a disk around a star, or that a pre-binary core fragments into two binary components. The results of our analysis are important for (i) the interpretation of the observed mass ratio distribution and binary fraction for a sample of stars, (ii) a range of possible initial condition algorithms for star cluster simulations, and (iii) how to discriminate between the different star formation scenarios.Comment: 43 pages, 18 figures, accepted for publication in A&

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Radiation hydrodynamics with Adaptive Mesh Refinement and application to prestellar core collapse. I Methods

    Full text link
    Radiative transfer has a strong impact on the collapse and the fragmentation of prestellar dense cores. We present the radiation-hydrodynamics solver we designed for the RAMSES code. The method is designed for astrophysical purposes, and in particular for protostellar collapse. We present the solver, using the co-moving frame to evaluate the radiative quantities. We use the popular flux limited diffusion approximation, under the grey approximation (one group of photon). The solver is based on the second-order Godunov scheme of RAMSES for its hyperbolic part, and on an implicit scheme for the radiation diffusion and the coupling between radiation and matter. We report in details our methodology to integrate the RHD solver into RAMSES. We test successfully the method against several conventional tests. For validation in 3D, we perform calculations of the collapse of an isolated 1 M_sun prestellar dense core, without rotation. We compare successfully the results with previous studies using different models for radiation and hydrodynamics. We have developed a full radiation hydrodynamics solver in the RAMSES code, that handles adaptive mesh refinement grids. The method is a combination of an explicit scheme and an implicit scheme, accurate to the second-order in space. Our method is well suited for star formation purposes. Results of multidimensional dense core collapse calculations with rotation are presented in a companion paper.Comment: 16 pages, 9 figures, A&A accepte
    • …
    corecore