276 research outputs found

    Young starless cores embedded in the magnetically dominated Pipe Nebula

    Get PDF
    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be threaded by a uniform magnetic field at scales of few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30-m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace better the densest regions than previous 2MASS extinction maps, while 2MASS extinction maps trace better the diffuse gas. The properties of the cores derived from dust emission show average radii of ~0.09 pc, densities of ~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage, and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission, with CS detections toward all the sample. Two of them, Cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.Comment: Accepted for publication in ApJ. 15 pages, 5 figures, 9 table

    Periodontal Disease and Nuclear and Oxidative DNA Damage

    Get PDF
    Oral health is an important aspect of the overall health status of an individual. DNA damage has been associated with oral health and dental factors due to the increased of oxidative stress (OxS). DNA damage can produce a wide range of effects on human health. These effects could appear immediately, but others do not become evident much later. Chronic diseases have been study to understand their mechanisms, clinical implications, and the development of secondary disease such as cancer. Periodontitis is one of the most common oral diseases. It is an inflammatory chronic infectious disease, which is characterized by the loss of supporting tissues and tooth loss caused by periodontopathogens and long-term release of reactive oxygen species (ROS); thus, oxidative stress is increased during periodontitis. Oxidative stress can produce DNA damage, including the oxidation of nucleosides, which could cause DNA strand break. This oxidative damage leads the formation of micronuclei (MN) a marker of nuclear damage. Also, oxidative stress increased 8-hydroxy-2′-deoxyguanosine levels which are the most common stable product of oxidative DNA damage

    Functional upgrading in China’s export processing sector

    Get PDF
    Functional upgrading occurs when a firm acquires more sophisticated functions within an existing value chain. In this paper, we analyze if there is evidence of this type of upgrading in China’s export processing regime by investigating dynamics in the relative prevalence of Import & Assembly (IA) versus Pure Assembly (PA) processing trade over the period 2000-2013. Firms in both regimes provide similar manufacturing services to foreign companies, but IA firms also conduct the sophisticated tasks of quality control, searching, financing and storing imported materials. Consistent with a trend of functional upgrading, we show that the share of IA trade in total processing trade has increased rapidly during the period 2000-2006, both overall and within product categories. Furthermore, we find that this trend has gone hand in hand with improvements in a sector’s labor productivity and unit values. Against expectations, we find that this process has slowed down notably during the period 2006-2013.status: publishe

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure
    corecore