79 research outputs found

    Der Digitale Assistent DA-3: Eine Plattform für die Inhaltserschließung

    Get PDF
    Der "Digitale Assistent" DA-3 ist ein webbasiertes Tool zur maschinellen Unterstützung der intellektuellen verbalen und klassifikatorischen Inhaltserschließung. Im Frühjahr 2016 wurde einer breiteren Fachöffentlichkeit die zunächst für den Einsatz im IBS|BW-Konsortium[1] konzipierte Vorgängerversion DA-2 vorgestellt. Die Community nahm die Entwicklung vor dem Hintergrund der strategischen Diskussionen um zukunftsfähige Verfahren der Inhaltserschließung mit großem Interesse auf. Inzwischen wird das Tool in einem auf drei Jahre angelegten Kooperationsprojekt zwischen der Firma Eurospider Information Technology, dem IBS|BW-Konsortium, der Staatsbibliothek zu Berlin und den beiden Verbundzentralen VZG und BSZ zu einem zentralen und leistungsstarken Service weiterentwickelt. Die ersten Anwenderbibliotheken in SWB und GBV setzen den DA-3 während dieser Projektphase bereits erfolgreich ein, am Ende ist die Überführung in den Routinebetrieb vorgesehen. Der Beitrag beschreibt den derzeitigen Stand und Nutzen des Projekts im Kontext der aktuellen Rahmenbedingungen, stellt ausführlich die Funktionalitäten des DA-3 vor, gibt einen kleinen Einblick hinter die Kulissen der Projektpartner und einen Ausblick auf kommende Entwicklungsschritte.   [1] IBS steht für “Integriertes Bibliothekssystem” - ursprünglich ein Verbund von 54 Universitäts-, Landes- und Hochschulbibliotheken in Baden-Württemberg, die die Bibliothekssoftware aDIS/BMS benutzen, wurde das Konsortium Anfang 2018 auf alle Universitäts-, Landes- und Hochschulbibliotheken von Baden-Württemberg ausgeweitet.Summary: The “digital assistent" DA-3 is a web-based tool to assist intellectual verbal and classificatory subject cataloguing. The preceding version DA-2 was designed for application in the IBS|BW-Konsortium1 and was presented to a broader professional public in spring 2016. Amid strategic discussions about a sustainable content indexing the community received this development with great interest. Currently, the tool is being developed to a pivotal and powerful service in a collaborative project between Eurospider Information Technology, IBS|BW-Konsortium, Staatsbibliothek zu Berlin and VZG and BSZ, the two head offices of GBV and SWB, termed to last for three years. The first client libraries in SWB and GBV are successfully working with the DA-3, while it is still under development. The transition to routine use is scheduled for the end of the project phase. The article describes the status quo of the project and its benefit in context of current framework conditions. It presents the features of the DA-3 in detail, offers a glance behind the scenes of the project partners and outlines future development steps

    Interplay between HIV Entry and Transportin-SR2 Dependency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transportin-SR2 (TRN-SR2, TNPO3, transportin 3) was previously identified as an interaction partner of human immunodeficiency virus type 1 (HIV-1) integrase and functions as a nuclear import factor of HIV-1. A possible role of capsid in transportin-SR2-mediated nuclear import was recently suggested by the findings that a chimeric HIV virus, carrying the murine leukemia virus (MLV) capsid and matrix proteins, displayed a transportin-SR2 independent phenotype, and that the HIV-1 N74D capsid mutant proved insensitive to transportin-SR2 knockdown.</p> <p>Results</p> <p>Our present analysis of viral specificity reveals that TRN-SR2 is not used to the same extent by all lentiviruses. The DNA flap does not determine the TRN-SR2 requirement of HIV-1. We corroborate the TRN-SR2 independent phenotype of the chimeric HIV virus carrying the MLV capsid and matrix proteins. We reanalyzed the HIV-1 N74D capsid mutant in cells transiently or stably depleted of transportin-SR2 and confirm that the N74D capsid mutant is independent of TRN-SR2 when pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Remarkably, although somewhat less dependent on TRN-SR2 than wild type virus, the N74D capsid mutant carrying the wild type HIV-1 envelope required TRN-SR2 for efficient replication. By pseudotyping with envelopes that mediate pH-independent viral uptake including HIV-1, measles virus and amphotropic MLV envelopes, we demonstrate that HIV-1 N74D capsid mutant viruses retain partial dependency on TRN-SR2. However, this dependency on TRN-SR2 is lost when the HIV N74D capsid mutant is pseudotyped with envelopes mediating pH-dependent endocytosis, such as the VSV-G and Ebola virus envelopes.</p> <p>Conclusion</p> <p>Here we discover a link between the viral entry of HIV and its interaction with TRN-SR2. Our data confirm the importance of TRN-SR2 in HIV-1 replication and argue for careful interpretation of experiments performed with VSV-G pseudotyped viruses in studies on early steps of HIV replication including the role of capsid therein.</p

    Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis.

    Get PDF
    Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P<5 × 10(-8)) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease

    Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations

    Get PDF
    Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2×10−201), ABCG2 (p = 3.1×10−26), SLC17A1 (p = 3.0×10−14), SLC22A11 (p = 6.7×10−14), SLC22A12 (p = 2.0×10−9), SLC16A9 (p = 1.1×10−8), GCKR (p = 1.4×10−9), LRRC16A (p = 8.5×10−9), and near PDZK1 (p = 2.7×10−9). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0×10−26) and propionyl-L-carnitine (p = 5.0×10−8) concentrations, which in turn were associated with serum UA levels (p = 1.4×10−57 and p = 8.1×10−54, respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels

    Framework and baseline examination of the German National Cohort (NAKO)

    Get PDF
    The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis

    Get PDF
    Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P <5 x 10(-8)) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease
    corecore