59 research outputs found
Asymmetric nuclear matter in a Hartree-Fock approach to non-linear QHD
The Equation of State (EOS) for asymmetric nuclear matter is discussed
starting from a phenomenological hadronic field theory of Serot-Walecka type
including exchange terms. In a model with self interactions of the scalar
sigma-meson we show that the Fock terms naturally lead to isospin effects in
the nuclear EOS. These effects are quite large and dominate over the
contribution due to isovector mesons. We obtain a potential symmetry term of
"stiff" type, i.e. increasing with baryon density and an interesting behaviour
of neutron/proton effective masses of relevance for transport properties of
asymmetric dense matter.Comment: 12 pages (LATEX), 3 Postscript figures, revised versio
Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition
The properties of fragments and light charged particles emitted in
multifragmentation of single sources formed in central 36AMeV Gd+U collisions
are reviewed. Most of the products are isotropically distributed in the
reaction c.m. Fragment kinetic energies reveal the onset of radial collective
energy. A bulk effect is experimentally evidenced from the similarity of the
charge distribution with that from the lighter 32AMeV Xe+Sn system. Spinodal
decomposition of finite nuclear matter exhibits the same property in simulated
central collisions for the two systems, and appears therefore as a possible
mechanism at the origin of multifragmentation in this incident energy domain.Comment: 28 pages including 14 figures; submitted to Nucl. Phys.
Collective modes of asymmetric nuclear matter in Quantum HadroDynamics
We discuss a fully relativistic Landau Fermi liquid theory based on the
Quantum Hadro-Dynamics () effective field picture of Nuclear Matter
({\it NM}).
From the linearized kinetic equations we get the dispersion relations of the
propagating collective modes. We focus our attention on the dynamical effects
of the interplay between scalar and vector channel contributions. A beautiful
``mirror'' structure in the form of the dynamical response in the
isoscalar/isovector degree of freedom is revealed, with a complete parallelism
in the role respectively played by the compressibility and the symmetry energy.
All that strongly supports the introduction of an explicit coupling to the
scalar-isovector channel of the nucleon-nucleon interaction. In particular we
study the influence of this coupling (to a -meson-like effective field)
on the collective response of asymmetric nuclear matter (). Interesting
contributions are found on the propagation of isovector-like modes at normal
density and on an expected smooth transition to isoscalar-like oscillations at
high baryon density. Important ``chemical'' effects on the neutron-proton
structure of the mode are shown. For dilute we have the isospin
distillation mechanism of the unstable isoscalar-like oscillations, while at
high baryon density we predict an almost pure neutron wave structure of the
propagating sounds.Comment: 18 pages (LATEX), 8 Postscript figures, uses "epsfig
Multifragmentation of a very heavy nuclear system (I): Selection of single-source events
A sample of `single-source' events, compatible with the multifragmentation of
very heavy fused systems, are isolated among well-measured 155Gd+natU 36AMeV
reactions by examining the evolution of the kinematics of fragments with Z>=5
as a function of the dissipated energy and loss of memory of the entrance
channel. Single-source events are found to be the result of very central
collisions. Such central collisions may also lead to multiple fragment emission
due to the decay of excited projectile- and target-like nuclei and so-called
`neck' emission, and for this reason the isolation of single-source events is
very difficult. Event-selection criteria based on centrality of collisions, or
on the isotropy of the emitted fragments in each event, are found to be
inefficient to separate the two mechanisms, unless they take into account the
redistribution of fragments' kinetic energies into directions perpendicular to
the beam axis. The selected events are good candidates to look for bulk effects
in the multifragmentation process.Comment: 39 pages including 15 figures; submitted to Nucl. Phys.
Study of intermediate velocity products in the Ar+Ni collisions between 52 and 95 A.MeV
Intermediate velocity products in Ar+Ni collisions from 52 to 95 A.MeV are
studied in an experiment performed at the GANIL facility with the 4
multidetector INDRA. It is shown that these emissions cannot be explained by
statistical decays of the quasi-projectile and the quasi-target in complete
equilibrium. Three methods are used to isolate and characterize intermediate
velocity products. The total mass of these products increases with the violence
of the collision and reaches a large fraction of the system mass in mid-central
collisions. This mass is found independent of the incident energy, but strongly
dependent on the geometry of the collision. Finally it is shown that the
kinematical characteristics of intermediate velocity products are weakly
dependent on the experimental impact parameter, but strongly dependent on the
incident energy. The observed trends are consistent with a
participant-spectator like scenario or with neck emissions and/or break-up.Comment: 37 pages, 13 figure
Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells
Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response
Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells
Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response
- …