197 research outputs found

    Jet Tomography in the Forward Direction at RHIC

    Get PDF
    Hadron production at high-pTp_T displays a strong suppression pattern in a wide rapidity region in heavy ion collisions at RHIC energies. This finding indicates the presence of strong final state effects for both transversally and longitudinally traveling partons, namely induced energy loss. We have developed a perturbative QCD based model to describe hadron production in pppp collision, which can be combined with the Glauber -- Gribov model to describe hadron production in heavy ion collisions. Investigating AuAuAuAu and CuCuCuCu collisions at energy s=200\sqrt{s}=200 AAGeV at mid-rapidity, we find the opacity of the strongly interacting hot matter to be proportional to the participant nucleon number. Considering forward rapidities, the suppression pattern indicates the formation of a longitudinally contracted dense deconfined zone in central heavy ion collisions. We determine parameters for the initial geometry from the existing data.Comment: 6 pages for Hot Quarks '06 Conferenc

    Jet hadrochemistry as a characteristics of jet quenching

    Full text link
    Jets produced in nucleus-nucleus collisions at the LHC are expected to be strongly modified due to the interaction of the parton shower with the dense QCD matter. Here, we point out that jet quenching can leave signatures not only in the longitudinal and transverse jet energy and multiplicity distributions, but also in the hadrochemical composition of the jet fragments. In particular, we show that even in the absence of medium effects at or after hadronization, the medium-modification of the parton shower can result in significant changes in jet hadrochemistry. We discuss how jet hadrochemistry can be studied within the high-multiplicity environment of nucleus-nucleus collisions at the LHC.Comment: 15 pages, 7 figures, LaTe

    Jet color chemistry and anomalous baryon production in AAAA-collisions

    Full text link
    We study anomalous high-pTp_T baryon production in AAAA-collisions due to formation of the two parton collinear gqgq system in the anti-sextet color state for quark jets and gggg system in the decuplet/anti-decuplet color states for gluon jets. Fragmentation of these states, which are absent for NNNN-collisions, after escaping from the quark-gluon plasma leads to baryon production. Our qualitative estimates show that this mechanism can be potentially important at RHIC and LHC energies.Comment: 20 pages, 4 figures, Eur.Phys.J. versio

    Calculating Quenching Weights

    Get PDF
    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus collisions. Remarkably, the kinematic constraint resulting from finite in-medium path length reduces significantly the transverse momentum dependence of the nuclear modification factor, thus leading to consistency with the data measured at the Relativistic Heavy Ion Collider (RHIC).Comment: 45 pages LaTeX, 20 eps-figure

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Correlated Production of p and p^bar in Au+Au Collisions at sqrt(s_NN) = 200 GeV

    Full text link
    Correlations between p and pbar's at transverse momenta typical of enhanced baryon production in Au+Au collisions are reported. The PHENIX experiment measures same and opposite sign baryon pairs in Au+Au collisions at sqrt(s_NN) = 200 GeV. Correlated production of p and p^bar with the trigger particle from the range 2.5 < p_T < 4.0 GeV/c and the associated particle with 1.8 < p_T < 2.5 GeV/c is observed to be nearly independent of the centrality of the collisions. Same sign pairs show no correlation at any centrality. The conditional yield of mesons triggered by baryons (and anti-baryons) and mesons in the same pT range rises with increasing centrality, except for the most central collisions, where baryons show a significantly smaller number of associated mesons. These data are consistent with a picture in which hard scattered partons produce correlated p and p^bar in the p_T region of the baryon excess.Comment: 420 authors from 58 institutions, 21 pages,5 figures. Submitted to Physics Letters B. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Updated precision measurement of the average lifetime of B hadrons

    Get PDF
    The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore