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Abstract

A search has been made for pairs and for single production of scalar lepto-
quarks of the �rst and second generations using a data sample of 392000 Zo

decays from the DELPHI detector at LEP 1. No signal was found and limits on
the leptoquark mass, production cross section and branching ratio were set. A
mass limit at 95 % con�dence level of 45.5 GeV/c2 was obtained for leptoquark
pair production. The search for the production of a single leptoquark probed
the mass region above this limit and its results exclude �rst and second genera-
tion leptoquarks Do with masses below 65 GeV/c2 and 73 GeV/c2 respectively,
at 95% con�dence level, assuming that the Dolq Yukawa coupling �� is equal
to the electromagnetic one. An upper limit is also given on the coupling �� as
a function of the leptoquark mass mDo

.
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1. Introduction

Among possible new particles in physics beyond the StandardModel, the leptoquarks
are an interesting category of exotic colour triplets with couplings to quark-lepton
pairs. They are a generic prediction of uni�ed theories [1], of models with quark-lepton
substructure [2] and of technicolor schemes [3]. Speci�c calculations of their production
cross-sections are model dependent [4].

Some theoretical frameworks, in particular low energy predictions of superstring
theories such as E6 [5] and composite models [2], allow leptoquarks to be naturally light
with masses compatible with constraints from low energy processes. These predictions
have inspired a series of searches at present colliders.

Constraints on leptoquark pair production have been obtained, prior to LEP, by
JADE [6] at the PETRA e+e� collider, AMY [7] at the TRISTAN e+e� collider and

UA1 [8] at the CERN �pp collider.

At LEP 1, all collaborations have searched for direct leptoquark pair production in
Zo decays and have published mass limits which reach the LEP 1 allowed kinematical
limit [9,10].

Recently more stringent mass limits have been published for pair production of a
�rst generation scalar leptoquark decaying into a quark and an electron, by the UA2
collaboration [11], 67 GeV/c2, and by the CDF collaboration [12], 82 GeV/c2 at 95%
con�dence level for a branching ratio into an electron and a jet of 50%. For single
leptoquark production of the �rst generation the ZEUS collaboration [13] at HERA
has published mass limits of 168 GeV/c2 and 176 GeV/c2 depending on the chirality of
the leptoquark couplings to the quark-electron pair and the H1 collaboration has given
limits [14] ranging from 145 to 192 GeV/c2 for e�q and from 98 to 121 GeV/c2 for e��q
states.

The present study extends the search for �rst and second generation leptoquarks
in e+e� collisions, to include single leptoquark production which gives the opportunity
to explore a mass region up to about 80 GeV/c2 at LEP 1. Although the accessible
mass range is smaller than at HERA, the present DELPHI search is also sensitive to
leptoquarks of the second generation.

2. Leptoquark signals

Although the scalar leptoquarks predicted by various models have di�erent quantum
numbers, they have a common feature: they decay to a lepton-quark pair, which gives

the distinctive event topologies.

The aim of the present work is to search for leptoquarks using a model-independent

selection and analysis of event topologies. Model predictions provide hypothetical lep-
toquark cross-sections and decay con�gurations to be compared with the data. The E6

compacti�cation in superstring-inspired models [5], is used to evaluate the experimental
limits, since it gives the lowest number of expected events.

This analysis considers the decays to quarks and charged leptons of the �rst two
generations of the isosinglet, charge Q = �1

3
, colour triplet, mass degenerate scalar

leptoquarks Do, D
c

o
, with a branching ratio 2

3
to the up quark and charged lepton of

each generation, as predicted to emerge by E6 compacti�cation [15,16]. Do, D
c

o
and

D 1

2

constitute the new supersymmetric multiplet predicted by E6. Do and Dc

o
are the

two supersymmetric partners of the corresponding fermion �eld D 1

2

in the same way
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as the left and right-handed squarks correspond to the fermion quark �eld. Although
Do(Q = �1

3
) and Dc

o
(Q = +1

3
) are di�erent particles each one with its own antiparticle

�Do(Q = +1

3
) and �Dc

o
(Q = �1

3
) respectively, they are assumed to be mass degenerate

in order to simplify the cross-section calculations. Generation mixing decays are not
considered to avoid an increase of parameters.

In the framework of composite models, the same production cross-sections can be
obtained by considering a scalar leptoquark with Q = �1

3
and a ZoDo

�Do coupling
�xed by gauge symmetry. The branching ratios to the various decay modes are free
parameters in composite models.

The scalar leptoquark decay modes to quarks and charged leptons (e+e� ! ql� �ql+)
provide a characteristic signature of an opposite-sign dilepton pair isolated from
hadronic jets, with no missing energy. The signal from this topology is conveniently

separable from the Standard Model background in e+e� collisions. The main back-
ground, coming from Zo ! b�b with both b's decaying semileptonically, gives an event
shape with the two jet-lepton pairs widely separated from each other.

Another possible background may come from the four-fermion �nal state e+e� !

q�ql+l�, which is expected [17] to contribute less than 1.1 events, for l = e or � after
cuts similar to the ones used in this search, and for the integrated luminosity of 16.3
pb�1.

A similar signal, with 2 jets and a l�l+ pair, could come from Standard Model
Higgs-boson production [18]. The branching fraction for Zo ! Zo�Ho ! Hol+l� is
' 2 � 10�6(4:5 � 10�7) for a Higgs-boson mass mHo = 50 GeV/c2 (60 GeV/c2) and is
comparable to any leptoquark signal rate [19]. These events, should they occur, can be
easily separated from the leptoquark signal by imposing kinematical constraints.

Thus, the signals for single and pair leptoquark production in e+e� scattering are
clearly distinguishable from Standard Model background sources.

3. Data Sample

This analysis is based on the 1990 and 1991 data samples collected by the DELPHI
detector. They comprise 392000 recorded Zo decays, from an integrated luminosity of
16.3 pb�1.

A detailed description of the DELPHI detector, of the triggering conditions and of
the event processing chain can be found in Ref. [20]. Here, only the speci�c properties
relevant to the following analysis are summarized.

The charged particle tracks were measured in the 1.2 T magnetic �eld by a set
of three cylindrical tracking detectors: the Inner Detector (ID) covering polar angles
between 29o and 151o, the Time Projection Chamber (TPC) covering angles between
21o and 159o and the Outer Detector (OD) covering polar angles between 42o and 138o:

The electromagnetic energy was measured by the High Density Projection Chamber

(HPC) in the barrel region, and by the Forward Electromagnetic Calorimeter (FEMC)
in the end caps. The HPC is a high granularity gas sampling calorimeter covering
polar angles 40o to 140o. The FEMC consists of 2 � 4500 lead glass blocks covering
polar angles from 10o to 36o on each side. Hadron shower energies were measured by
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combining measurements from the Hadron Calorimeter (the instrumented iron return
yoke of the magnet) and the electromagnetic calorimeters.

The data analysis relies on the identi�cation of electrons and muons. The muon iden-
ti�cation was mainly based on the muon chambers and is described in detail in Ref.[21].

Muon chamber hits were combined with the tracking information and a candidate was
retained if matching hits were found in at least 2 layers.

The electron identi�cation [22] was performed using the energy and longitudinal
shape of the shower measured in the HPC and the ionization loss measured in the
TPC. The identi�cation criteria required charged particles with momentum larger than
3 GeV=c and an associated shower in the HPC with at least 1 GeV of energy.

The average identi�cation e�ciency has been measured to be 70 % for muons and
about 55 % for electrons from b�b events in the barrel region of the detector. In the
present analysis, the average muon identi�cation e�ciency is (78 � 3)%, determined
from Monte Carlo simulated events with leptoquark signal.

4. Event analysis

Charged particles were considered in the analysis if they had a momentum greater
than 100 MeV/c, a measured track length above 30 cm and were emitted at more
than 25o with respect to the beam axis, where tracks are well reconstructed by the
TPC. They were also selected to originate at the interaction point within 10 cm in the
longitudinal coordinate and 4 cm in the radial direction.

The events were selected according to the following requirements for the Zo hadronic
decays :

� At least seven charged particles; this cut eliminates the �+�� contamination.
� Total energy of charged particles larger than 14% of the nominal center of mass
energy.

� Event thrust axis satisfying the condition: jcos�thrj � 0:85.

The production of a leptoquark pair, or of a single leptoquark, is clearly identi�ed
by the presence of two opposite sign isolated leptons accompanied by hadronic jets. In
the case of decays without generation mixing, as considered in this analysis, the two
leptons are of the same generation.

Based on a study of simulated events with pair and single leptoquark production, a
method, independent of jet algorithms, was developed for event selection.

According to this study, an event must contain two opposite sign muons or electrons.
In case of more lepton candidates, the two opposite sign leptons of the same generation
with the highest momentum were chosen to search for isolated leptons.

As a measure of isolation the following quantity was used:

�i = minf2EiEj(1� cos�ij)g
1

2

where i = 1,2 are the two most energetic leptons of the same generation, j scans all
particles with (i 6= j), �ij is the angle between lepton i and a charged or neutral particle
j with momentum greater than 500 MeV/c and Ei (Ej) are the corresponding energies
of the two particles.

The isolated leptons had to ful�ll the following requirements:

� Their momentum had to be greater than 5 GeV/c.
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� The most isolated lepton had to have �1 > 2.0 GeV.
� The next isolated lepton had to have �2 > 1.5 GeV.

� The opening angle between the two leptons had to be larger than 30o in order to
suppress the contribution from sequential leptonic decays of b quarks.

Samples of Zo decays to the leptoquark topologies studied in this paper were gener-
ated using a detailed simulation of the DELPHI detector [23]. The same program was
also used to produce much larger event samples for background studies.

The distributions of �1 and �2 for data and Monte Carlo simulations of leptoquark
production, and of the background, are shown in �gure 1.

4.1 Pair Production

At the Zo peak, the cross-section for pair production of scalar leptoquarks is almost
independent of the unknown Yukawa coupling of the leptoquark to the lepton and
the quark [16] . It depends mostly on the ZoDo

�Do coupling which is �xed by gauge
symmetry.

The e�ciency of the selection criteria was studied using samples of events at various
leptoquark masses generated with a Monte Carlo program using a Do

�Do ! c���c�+ gen-
erator with parton shower model fragmentation based on the LUND program JETSET
7.3 [24] and a detailed simulation of the DELPHI detector.

To estimate the Standard Model background a sample of 250000 Zo ! q�q simulated
decays and a sample of 120000 Zo ! b�b and Zo ! c�c events with semileptonic decays
giving a muon or an electron, were processed using the same analysis as for the data.

No events were observed in the data or in the simulated background samples after
applying the cuts.

The detection e�ciencies found for second generation pair produced leptoquarks of
mass up to 44 GeV/c2 are given in the �rst row of Table 1.

The detection e�ciency for the �rst generation leptoquark, Do
�Do ! ue��ue+ was

calculated from the simulated decays for the second generation leptoquarks by rescaling

the muon detection e�ciency. In this procedure the overall electron detection e�ciency
was taken to be 60 % that of the muons, a conservative estimate to account for the
lower reconstruction e�ciencies of the two electrons relatively to the two muons and
the systematic errors due to the electron identi�cation. Figure 2 shows the expected
number of events with Do

�Do pair production as a function of the leptoquark mass for a
scalar leptoquark of the �rst and second generation with Q = �1

3
and branching ratio

to a quark and a charged lepton equal to 2

3
as expected from E6 compacti�cation. The

expected number of events for scalar, mass degenerate, leptoquark production of the
�rst two generations is also shown.

In calculating all the limits and the expected number of events, the leptoquark
cross-section was reduced by a factor 0.74 to take into account initial state radiation
and electroweak e�ects [9,10].

A mass limit of mDo
> 45.5 GeV/c2 at 95% con�dence level is obtained for pair

produced scalar leptoquarks from the combined results for the �rst two generations.
The limit is only slightly less for leptoquarks of each generation separately. These
results reach the kinematical limit allowed by LEP 1 and, due to the characteristic �3
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threshold factor for scalar pair production in e+e� annihilation, this bound depends
only slightly on the speci�c model considered.

4.2 Single Production

Single leptoquark production in e+e� collisions can proceed through:

e+e� ! Zo ! Do l+�q; e+e� ! Zo ! �Do l�q (+Do $ Dc

o
)

where only one of the leptoquarks is produced on-shell. This process probes part of the
mass region 1

2
mZo < mDo

< mZo .

The cross-section for single leptoquark production is proportional to the model de-
pendent qlDo Yukawa type coupling which can be parametrized as:

�� =
g2
D

4�
= k�em

assuming that the leptoquarksDo andD
c

o
are mass degenerate and have equal couplings.

The production cross-sections were calculated according to the matrix elements of Ref
[15] inspired by E6 superstring models, assuming a qlDo coupling with k = 1. In this
case the strength of the coupling is equal to that of the electromagnetic one, �em:

The event topology for single leptoquark production is similar to that for pair pro-
duction, but as the leptoquark becomes heavier, the distribution of quarks and leptons

becomes more isotropic.
Events were generated by a Monte Carlo program with single leptoquark production

of various masses and with parton shower model fragmentation. These events were
subjected to the same selection criteria as the data.

mD0
(GeV/c2) 25. 30. 35. 40. 44. 55. 65. 75. 80.

�(%)-pair 60 62 60 57 51
�3 � 3 �3 �3 �3

�(%)-single 49 45 41 30
�4 �4 �4 �3

Table 1: Detection e�ciency (%) for scalar leptoquarks of the second generation
(D0 ! ��c) for various masses (GeV/c2)

The detection e�ciencies found for single leptoquarks of the second generation pro-
duced with masses from 55 GeV/c2 to 80 GeV/c2 are given in the second row of Table
1. Figure 2 shows the number of expected events as a function of the leptoquark mass
for a scalar leptoquark (Q = �1

3
) of the �rst and second generation with a Yukawa

coupling equal to �em and a branching ratio equal to 2
3
. The slopes of our curves di�er

from the corresponding ones of Ref [15] due to the di�erent cuts used.

The analysis can be extended to exclude production of single leptoquarks with masses
below 55 GeV/c2. Assuming the e�ciency for their detection is at least (49 � 4) %,
the extrapolation of the single leptoquark limits are also shown in �gure 2 down to the
kinematical mass limit for pair leptoquark production allowed at LEP 1.

Since no leptoquark candidates were found, a lower mass limit of 65 GeV/c2 and
73 GeV/c2, at 95 % con�dence level, for �rst and second generation scalar leptoquarks
respectively, is obtained assuming that the Yukawa coupling is equal to �em. Under
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the additional assumption of mass degeneracy for the �rst and second generation scalar
leptoquarks, the lower mass limit is found to be 77 GeV/c2.

5. Limits on Leptoquark production

The model-independent cross-section upper limit, �lim, is given in �gure 3a as a
function of Do mass for pair and singly produced scalar leptoquarks of the second
generation (Do ! ��c), assuming the branching ratio to be 100%. Extrapolation of the
single leptoquark limits into the (45 - 55) GeV/c2 leptoquark mass interval under the
same assumptions described previously for �gure 2 is also shown in �gure 3a.

The branching ratio limit, at 95% con�dence level, for pair produced leptoquarks is
displayed as a contour plot in �gure 3b for the same generation.

Single production of leptoquarks is given in terms of the unknown Dolq Yukawa
coupling, ��. The contour given in �gure 3c shows the upper limit (at 95% con�dence
level) on �� as a function of mDo, for the second generation leptoquark and a branching
ratio BR =2

3
.

6. Conclusions

A data sample of 392000 Zo decays corresponding to an integrated luminosity of 16.3

pb�1 from the DELPHI detector at LEP 1 has been used to search for scalar leptoquarks
both in pair and single production.

No evidence was found for leptoquark production from the analysis of events with
two isolated opposite-sign leptons of the same generation, accompanied by hadrons.

A limit was obtained for the mass of pair produced leptoquarks which reaches the
kinematical limit of LEP 1, mDo

� 45.5 GeV/c2 at 95% con�dence level. Model-
independent cross-section limits as a function of the leptoquark mass mDo

, at 95%
con�dence level, are also given (�gure 3a).

The results of the search for single leptoquark production exclude �rst and second
generation leptoquarks with masses below 65 and 73 GeV/c2 respectively, assuming
that the Dolq Yukawa coupling �� is equal to the electromagnetic one. An upper limit
is also given on the coupling �� as a function of the mass mDo

at 95% con�dence level.
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Figure Captions

Figure 1: Distributions of the isolation parameters �1 and �2:

(a) and (b) Distribution of �1 and �2 for the data (black dots) and simulated background
(line) normalized to the data sample for both the electron and muon channel.

(c) and (d) Distribution of �1 and �2 for a simulated leptoquark signal from pair (mDo
=

40 GeV/c2) and single (mDo
= 75 GeV/c2, hatched) production.

Figure 2: Expected number of events for pair and single leptoquark production as
a function of the mass mDo

for a scalar leptoquark of the �rst and second generation
with Q = �1

3
and BR = 2

3
. For the single leptoquark production, the unknown Yukawa

coupling ��, was set equal to the electromagnetic one �em. The expected number of
events for mass degenerate leptoquarks, combining the two generations, is also shown,
as well as the 95% con�dence level line .

Figure 3: Limits at 95% CL for a scalar leptoquark with charge Q = �1

3
:

(a) Model-independent cross-section limits as a function of the mass for a leptoquark
of the second generation Do ! ��c) with BR = 100% for (I) pair and (II) single
production.

(b) The contour in the plane of mass and branching ratio for the second generation
(Do ! ��c) pair produced leptoquarks.

(c) Limits on the Dolq Yukawa coupling as a function of the mass for the second
generation single leptoquark production of the E6 inspired model with Q = �1

3
and

BR = 2
3
.
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