86 research outputs found

    Stability of Rossby waves in the beta-plane approximation

    Full text link
    Floquet theory is used to describe the unstable spectrum at large scales of the beta-plane equation linearized about Rossby waves. Base flows consisting of one to three Rossby wave are considered analytically using continued fractions and the method of multiple scales, while base flow with more than three Rossby waves are studied numerically. It is demonstrated that the mechanism for instability changes from inflectional to triad resonance at an O(1) transition Rhines number Rh, independent of the Reynolds number. For a single Rossby wave base flow, the critical Reynolds number Re^c for instability is found in various limits. In the limits Rh --> infinity and k --> 0, the classical value Re^c = sqrt(2) is recovered. For Rh --> 0 and all orientations of the Rossby wave except zonal and meridional, the base flow is unstable for all Reynolds numbers; a zonal Rossby wave is stable, while a meridional Rossby wave has critical Reynolds number Re^c = sqrt(2). For more isotropic base flows consisting of many Rossby waves (up to forty), the most unstable mode is purely zonal for 2 <= Rh < infinity and is nearly zonal for Rh = 1/2, where the transition Rhines number is again O(1), independent of the Reynolds number and consistent with a change in the mechanism for instability from inflectional to triad resonance.Comment: 56 pages, 31 figures, submitted to Physica

    A scientific synthesis of marine protected areas in the United States: status and recommendations

    Get PDF
    Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity conservation and human well-being, including improving climate resilience and equitable access to nature. At a national level, they are central components in the U.S. commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the same ecological and social benefits. A U.S. system of MPAs that is equitable, well-managed, representative and connected, and includes areas at a level of protection that can deliver desired outcomes is best positioned to support national goals. We used a new MPA framework, The MPA Guide, to assess the level of protection and stage of establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly protected against extractive or destructive human activities, is in the central Pacific ocean. Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central Pacific MPA area is lightly or minimally protected against extractive or destructive human activities. These results highlight an urgent need to improve the quality, quantity, and representativeness of MPA protection in U.S. waters to bring benefits to human and marine communities. We identify and review the state of the science, including focal areas for achieving desired MPA outcomes and lessons learned from places where sound ecological and social design principles come together in MPAs that are set up to achieve national goals for equity, climate resilience, and biodiversity conservation. We recommend key opportunities for action specific to the U.S. context, including increasing funding, research, equity, and protection level for new and existing U.S. MPAs

    Comparing introductory course planning among full-time and part-time faculty

    Full text link
    Using data from a nationally representative survey of faculty teaching introductory college courses, this exploratory study compares course planning procedures of full-time and part-time faculty teaching courses in eight academic fields. The choice of variables examined was guided by a general model of course design developed from earlier studies of course planning. To control for discipline-related differences in faculty planning assumptions, separate analyses were conducted for the eight fields. No key differences were found between full-time and part-time faculty on the primary factors under investigation: substantive content-related influences on courses, strength of influence within the instructional environment, and planning steps and content arrangements faculty preferred.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43604/1/11162_2004_Article_BF00992618.pd

    Cross-cutting principles for planetary health education

    Get PDF
    Since the 2015 launch of the Rockefeller Foundation Lancet Commission on planetary health,1 an enormous groundswell of interest in planetary health education has emerged across many disciplines, institutions, and geographical regions. Advancing these global efforts in planetary health education will equip the next generation of scholars to address crucial questions in this emerging field and support the development of a community of practice. To provide a foundation for the growing interest and efforts in this field, the Planetary Health Alliance has facilitated the first attempt to create a set of principles for planetary health education that intersect education at all levels, across all scales, and in all regions of the world—ie, a set of cross-cutting principles

    Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants

    Get PDF
    Purpose We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks forBRCA1andBRCA2pathogenic variant carriers. Methods Retrospective cohort data on 18,935BRCA1and 12,339BRCA2female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. Results The ER-negative PRS showed the strongest association with BC risk forBRCA1carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33],P = 3x10(-72)). ForBRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36],P = 7x10(-50)). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk forBRCA1(HR = 1.32 [95% CI 1.25-1.40],P = 3x10(-22)) andBRCA2(HR = 1.44 [95% CI 1.30-1.60],P = 4x10(-12)) carriers. The associations in the prospective cohort were similar. Conclusion Population-based PRS are strongly associated with BC and EOC risks forBRCA1/2carriers and predict substantial absolute risk differences for women at PRS distribution extremes.Peer reviewe

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM (-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
    corecore