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Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity
conservation and human well-being, including improving climate resilience and
equitable access to nature. At a national level, they are central components in the U.S.
commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary
goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the
same ecological and social benefits. A U.S. system of MPAs that is equitable, well-
managed, representative and connected, and includes areas at a level of protection that
can deliver desired outcomes is best positioned to support national goals. We used a new
MPA framework, The MPA Guide, to assess the level of protection and stage of
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establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA
area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly
protected against extractive or destructive human activities, is in the central Pacific ocean.
Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central
Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central
Pacific MPA area is lightly or minimally protected against extractive or destructive human
activities. These results highlight an urgent need to improve the quality, quantity, and
representativeness of MPA protection in U.S. waters to bring benefits to human and
marine communities. We identify and review the state of the science, including focal areas
for achieving desired MPA outcomes and lessons learned from places where sound
ecological and social design principles come together in MPAs that are set up to achieve
national goals for equity, climate resilience, and biodiversity conservation. We recommend key
opportunities for action specific to the U.S. context, including increasing funding, research,
equity, and protection level for new and existing U.S. MPAs.
Keywords: marine protected area, biodiversity, ocean protection, conservation outcomes, The MPA Guide, area-
based management
1 INTRODUCTION

The ocean is critically important to the planet and human well-
being, which makes its sustainable management increasingly
urgent. Marine biodiversity worldwide is under threat from
human misuse and related impacts (Halpern et al., 2012;
Allison and Bassett, 2015; McCauley et al., 2015), including in
the United States (Fautin et al., 2010). Increased attention to
widespread inequity and injustice have highlighted the
interconnectedness of biodiversity, climate, and social justice
crises and the immediacy of the threats facing marine systems
and society (Bennett et al., 2021). These crises underscore the
ocean’s vast potential to provide vital ecosystem services on local,
regional, and global scales (IPBES, 2019; Stuchtey et al., 2020).
Sustaining these services requires reducing impacts from land-
based activities (e.g., lowering greenhouse gas emissions and
imposing controls on pollutants), as well as employing an
effective suite of complementary tools to enable an inclusive,
whole-ocean approach to marine resource management and
governance (Laffoley et al., 2020; Winther et al., 2020).

Effective use of strategic management tools – both area-based
and non-area-based – can protect and restore ocean health while
balancing human and ecological needs. Marine protected areas
(MPAs) are common, well-studied area-based tools that can
contribute to comprehensive ocean management and
governance. The International Union for the Conservation of
Nature (IUCN) defines a protected area as “a clearly defined
geographical space, recognised, dedicated and managed, through
legal or other effective means, to achieve the long-term
conservation of nature with associated ecosystem services and
cultural values” (IUCN WCPA, 2018). Extensive scientific
research has revealed broad ecological benefits from protecting
specific ocean areas from destructive and extractive activities
(Claudet et al., 2008; Lester et al., 2009; Giakoumi et al., 2017;
in.org 2
Friedlander, 2018; Zupan et al., 2018; Marcos et al., 2021),
particularly when they are fully or highly protected (Grorud-
Colvert et al., 2021). Furthermore, the protection MPAs provide
to ecosystems and biodiversity can produce benefits that extend
to local communities, fisheries, and economies (Angulo-Valdés
and Hatcher, 2010; Goñi et al., 2010; Ban et al., 2019a; Naidoo
et al., 2019; Wilson et al., 2020a). To produce these benefits,
MPAs must be underpinned by positive enabling conditions,
such as use of appropriate ecological and social design principles,
adequate enforcement, and inclusion of indigenous ecological
knowledge and wisdom, community needs and engagement,
scientific research, and monitoring of key species, ecosystems,
and ecosystem services (Kikiloi et al., 2017; Fulton et al., 2019;
Grorud-Colvert et al., 2021).

In recognition of the important benefits that protected areas
can provide, calls are increasing to update global targets for
protected and conserved area coverage to reflect the urgency of
the biodiversity and climate crises. These targets may be achieved
by a mix of Protected Areas and Other Effective Area-Based
Conservation Measures (OECMs; see Box 1). OECMs may have
a variety of objectives (e.g., fisheries, sustaining cultural
practices) but by definition are areas that also effectively
conserve biodiversity (Jonas et al., 2014; Gurney et al., 2021).
In relation to these global targets, recent scientific syntheses have
led to a growing consensus about the need to meaningfully
protect a much larger share of the planet than that which is
protected to date. A range of percent coverages have been
suggested to address specific goals, with some studies
suggesting a need for at least 30% (Gaines et al., 2010; O’Leary
et al., 2016; Dinerstein et al., 2019; Jones et al., 2020; Roberts
et al., 2020; Waldron et al., 2020; Sala et al., 2021) or 50%
(Wilson, 2016; Tallis et al., 2018) of the coastal and open ocean,
and/or 100% of marine areas beyond national jurisdiction
(White and Costello, 2014; Sumaila et al., 2015). Others flag
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BOX 1 | Types of Area-Based Management in U.S. Waters.

An array of tools to safeguard biodiversity. A wide variety of place-based ocean management tools exists for U.S. waters (Table 1). These range from large-scale
protected areas covering hundreds of thousands of square miles, to Areas of Special Biological Significance (ASBS) managed for water quality protection in the State of
California, which are as small as 0.02 mi2 (https://www.waterboards.ca.gov/). The primary intent of different area types varies widely, for example to ensure human health
and safety (e.g., a Military Closed Area) or to preserve cultural resources (e.g., a closure around a historic shipwreck) (Table 1). We note that by definition MPAs have the
conservation of nature as their explicit and primary goal (IUCN and WCPA, 2018). Thus, they are broadly used and their management interventions and outcomes are
specifically tracked to report progress on global biodiversity conservation targets (IUCN, 2016). MPA activities must align with the outcome of conserving nature and the
benefits it provides. But in practice, other area-based management tools may also deliver meaningful conservation benefits if they adequately protect ocean biodiversity
from impactful extractive and destructive activities. Evaluating conservation potential requires determining whether conservation goals in non-MPA areas are competing
with other goals since trade-offs inherent in pursuing other objectives can result in lower returns for biodiversity conservation.

Non-MPA areas that curb harmful activities for biodiversity and achieve effective conservation should be evaluated for their overall impact alongside MPAs to better
understand their contribution, including to the target to protect at least 30% of the U.S. ocean by 2030 (Conserving and Restoring America the Beautiful, 2021). These
areas may meet the definition of Other Effective Area-based Conservation Measures (OECMs). OECMs are areas managed with a variety of objectives – including human
uses such as harvesting food and maintaining cultural identity and rights – but that sustain biodiversity and thus have the potential to meaningfully contribute towards
conservation goals and targets (Jonas et al., 2014; Gurney et al., 2021). When well-designed and managed, OECMs and MPAs can play complementary roles, for
example by improving connectivity and representation across regional networks and improving equity and ability to meet local needs (Gurney et al., 2021). International
guidelines for recognizing and reporting OECMs were published in 2019 (IUCN-WCPA Task Force on OECMs, 2019). Identifying OECMs ultimately will depend on an
area’s ability to demonstrate effective conservation outcomes. This cataloging is ongoing in the U.S. and may include some of the area types listed in Table 1.
For example:

- Exclusion zones, such as those around coastal military bases and NASA installations, often designate no-access marine areas for security purposes, and thus may
provide conservation benefits (Esgro et al., 2020). Similarly, exclusion zones around other marine activities, such as oil and gas rigs, aquaculture net pens, coastal
nuclear power, LNG facilities, wind farms, and maritime transportation lanes, or around private property, may provide some biodiversity conservation benefits
even though they are not designated as MPAs (Rogers-Bennett et al., 2013).

- Fisheries management areas provide regulations with the primary goal of sustaining long-term production of targeted species, with fish population conservation
as an important consideration. In pursuing this goal, fisheries management areas may disallow (permanently or temporarily) activities that degrade biodiversity.
Area-based tools implemented for fisheries management include designation of essential fish habitat, habitat areas of particular concern, and time/area- and gear-
based restrictions. However, many fisheries management measures do not necessarily represent long-term biodiversity conservation, as the focus is on targeted
stocks with the goal to reopen fisheries once these stocks begin to recover. Identifying where fisheries management does contribute effective durable
conservation through improving biodiversity and ecosystem health, and categorizing these areas as OECMs, may help foster cooperation between sectors
(Gurney et al., 2021).
Overlapping jurisdictions. Fisheries management areas often overlap in space with MPAs and directly control the impacts of activities within their specific
jurisdiction. For example, most MPAs in federal waters must work cooperatively to address fishery impacts with NOAA Fisheries and the relevant regional fishery
management councils established under the Magnuson-Stevens Act. When strategically designed together, management measures provided by MPA and fisheries
management authorities can offer lasting and durable protection to marine resources if sufficient area is given for each and if conservation measures are long-term. For
example, in portions of the area surrounding the Farallon Islands, California, multiple fishery management regulations (including Rockfish Conservation Area and other gear
closures) complement the protections within the Farallon Islands National Marine Sanctuary and the Farallon Islands National Wildlife Refuge (Sletten et al., 2021). In other
cases, gaps in protection allow extractive uses that are not compatible with biodiversity conservation goals, for example if fishery management measures are temporary
and impactful fishing is allowed to resume within the MPA (violating the “long-term” stipulation in the IUCN definition of an MPA), or the MPA is not at a level of protection
that sufficiently conserves biodiversity, through allowing impactful extractive and destructive uses to occur. These situations may arise due to active opposition from some
user groups (e.g., see Box S1).
TABLE 1 | Types of area-based management in U.S. waters.

Type Examples Primary Conservation Intent

MPAs Marine Reserves, Marine National Monuments, National Marine Sanctuaries, National Parks,
National Wildlife Refuges, National Estuarine Research Reserves, similar state-managed areas

Conservation of nature with associated
ecosystem services and cultural values

Other
areas

Fishery
Management
Areas

Essential Fish Habitat, Habitat Areas of Particular Concern, Deep Sea Coral Protections Sustainable production

DeFacto MPAs Military Closed Areas, Vessel Traffic Areas Health and human safety

Water Quality
Protection
Areas

Areas of Special Biological Significance (CA) Water quality

Other Shipwrecks, war graves, permanent fishery closures Various
rontiers in Marine Scienc
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Areas that fall in “Other areas” rows may be identified as “Other Effective Area-based Conservation Measures” (OECMs) if they meet OECM criteria, including but not limited to effective
conservation of biodiversity.
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the importance of considering ecological representation; some
ecosystems are underrepresented in current protected areas
whereas others predominate area-based conservation, and this
can vary greatly among countries (Roberts et al., 2019; Bohorquez
et al., 2021). These results indicate that increasing ecological
representation, in addition to expanding protection, is a key need.

In response to these calls for greater protection, negotiations
continue around the post-2020 Global Biodiversity Framework
draft target to protect at least 30% of the global ocean by 2030 in
effectively and equitably managed, ecologically representative,
and well connectedMPAs and OECMs (IUCN, 2016; CBD, 2021).
The IUCN has put forward definitions for representativeness and
connectedness (WCPA/IUCN, 2007). The ≥30% target is not a
precise end-goal but instead a useful directional target based on
current scientific understanding of the minimum area needed to
support healthy, functioning ocean ecosystems, and generate
associated benefits for people (Woodley et al., 2019; Laffoley
et al., 2020). Achieving this target via areas that are effectively
designed and implemented could be one of the best means to
reduce threats to biodiversity and enable ecosystems to meet
peoples’ needs through sustainable, equitable use while
protecting the full spectrum of life in the ocean.

In line with these global targets, the U.S. has indicated a
strong interest in employing existing and new MPAs to provide
social and ecological benefits, including climate change
resilience. A target of conserving at least 30% of U.S. waters
was proclaimed at the Federal level in January 2021 (Conserving
and Restoring America the Beautiful, 2021; Executive Order
14008, 2021), accompanied by similar targets and support
among various Tribal leaders (Allen et al., 2021) and states
(e.g., California Executive Order N-82-20; the Hawaii
Governor’s Sustainable Hawaii Initiative). If current and future
U.S. MPAs are guided by scientific research and community
needs, achieving a 30% target has the potential to improve
biodiversity and human well-being outcomes. However,
without a thorough accounting of the status and efficacy of
existing U.S. MPAs, it is unclear what actions are required to
meet this potential. Both quantity and quality are key for
realizing the benefits MPAs can deliver for U.S. ecosystems,
communities, and economies now and in the future (Grorud-
Colvert et al., 2021).

We evaluated the status of ocean protection in the 50 largest
U.S. MPAs, which account for 99.7% of the total area of U.S.
MPAs, using a new framework that enables assessment of MPA
quality in addition to quantity (Grorud-Colvert et al., 2021). We
examine key opportunities for MPAs to contribute to climate
resilience, healthy fisheries, and other goals, and highlight the
importance of equity and justice as essential conditions for
effective MPA design and management. Here we define
effective protection as the ability of an MPA to return positive
conservation outcomes for biodiversity, which are also integral
for human well-being. We present a case for expanding benefits
to biodiversity, ecosystem services, and human well-being by
utilizing a strategic approach for increasing the total area, overall
level of protection, and representativeness of U.S. MPAs. We
identify gaps in understanding and offer recommendations,
Frontiers in Marine Science | www.frontiersin.org 4
based on the current state of science, for improving the design,
management, and governance of U.S. MPAs.
2 MPAs IN THE US: COVERAGE AND
PROTECTION LEVELS

Marine protected areas have been part of the U.S. government’s
approach to ocean and coastal conservation since the early 1900s.
The U.S. has nearly 1,000 implemented MPAs, including marine
and coastal national parks, national marine sanctuaries, national
wildlife refuges, and similar areas managed by states and
territories (Table S1). These MPAs cover 26% of U.S. waters
(Exclusive Economic Zone or EEZ, from 0-200 nautical miles),
containing over 17% of state waters (including inland bays and
estuaries; NOAA, 2020). Thus, on a national scale, the U.S. is
currently 4% away from achieving a 30% spatial target for MPA
extent. However, this coverage must be effective and
representative, as defined above, to achieve the goal of
conservation of nature to benefit biodiversity and people.
Achieving a spatial target does not necessarily ensure achieving
objectives. We need to know what protections U.S. MPAs are
currently providing, and what outcomes can be expected from
those protections.

We examined the 50 largest MPAs in the U.S. ocean to better
understand the status and efficacy of MPA protection in U.S.
waters. To do so, we employed a recent scientific synthesis, The
MPA Guide, which provides a framework and common language
for describing and evaluating the effectiveness of MPAs locally to
globally (Grorud-Colvert et al., 2021). Briefly, The MPA Guide
consists of four elements (Table S3): (1) stage of establishment,
which describes the degree to which the MPA is in operation and
actively protecting biodiversity; (2) level of protection provided
to biodiversity from extractive and destructive activities; (3)
enabling conditions, which describe the principles and
processes underlying MPA effectiveness in its local context,
both ecologically (e.g., size, spacing, connectivity) and socially
(e .g . , community engagement, communicat ion and
transparency, adequate funding and staffing); and (4) outcomes
that can be expected from MPAs or zones at a particular level of
protection, assuming enabling conditions are in place and the
MPA is at an implemented or actively managed stage of
establishment. Many benefits, including habitat and
biodiversity, are greatest when MPAs are fully or highly
protected from abatable threats such as destructive fishing,
overfishing, dredging, mining, or high-impact infrastructure
(Grorud-Colvert et al., 2021; Table S3). Furthermore, when
key enabling conditions are in place, positive outcomes from
fully and highly protected MPAs, such as community
involvement and improved income, are more likely for coastal
cultures, livelihoods, and economies over the longer term (Ban
et al., 2019a). As a result, regions with predominantly lightly or
minimally protected MPAs represent opportunities where
changes in MPA regulations and governance could result in
significant increases in conservation outcomes.
May 2022 | Volume 9 | Article 849927

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Sullivan-Stack et al. U.S. MPAs: Status and Recommendations
We investigated stage of establishment and level of protection
for the 50 largest MPAs by area in the U.S. ocean (Figure S1 and
Table S4). Because these 50 MPAs comprise over 99% of the
total U.S. MPA coverage (3,177,840 of 3,186,862 km2),
quantitative statements about the overall status of U.S.
protected areas are possible using this analysis of a subset of
MPAs. However, this analysis did not encompass the breadth of
smaller MPAs in U.S. waters, which provide important social and
ecological benefits and include some that are well designed and
networked (e.g., some of the California MPA network; Box 2);
future work should assess the stages and levels of these smaller-
scale MPAs. MPA areas were obtained from the Marine
Conservation Institute’s Marine Protection Atlas (MPAtlas.org)
database and the National Oceanographic and Atmospheric
Administration’s (NOAA’s) Marine Protected Areas Inventory
(NOAA, 2020). Certain large MPAs also overlapped with other
large MPAs of different jurisdiction; when this occurred we
evaluated the level of protection of each management area
individually, based on the activities happening in that specific
area. Some of these large MPAs also include smaller MPAs
within their boundaries which may afford different levels of
protection. We did not assess these here, as the total area
coverage of these small MPAs was negligible relative to the
large MPA in almost all cases. However, 21.9% of the Channel
Islands National Marine Sanctuary is covered by a network of
other smaller MPAs, many of which are fully and highly
protected (see Table S7). This area covers 3.0% of California
state waters. The level and stage of an MPA are best assessed by
local experts, such as managers, with first-hand experience of the
impacts to biodiversity in an area. Whenever possible, we used
this level of information. To find evidence for the criteria
required for each stage of establishment and for each of the
activities assessed for level of protection (Grorud-Colvert et al.,
2021; see http://mpa-guide.protectedplanet.net; Table S4), we
recorded information on management, regulations, allowed and
Frontiers in Marine Science | www.frontiersin.org 5
active uses and their impacts, including fishing gear types in use,
and current threats to biodiversity found in a management plan,
scientific literature, and via overlaying regulations from
overlapping jurisdictions. These were identified via extensive
online searches using management- and activity-based
keywords. We contacted individual MPA experts (e.g., the
MPA manager or staff) to request further information if
needed, for example on active management and activity
impacts. New information, regulations, or changes in human
activities may affect these levels and stages.

Applying The MPA Guide framework to these 50 largest U.S.
MPAs, we found 25.2% of the U.S. ocean is fully or highly
protected, out of the total 26.0% in any kind of MPA (Table 2).
However, total MPA area (and fully and highly protected area) is
overwhelmingly concentrated in a few large fully or highly
protected MPAs in the central Pacific (3.07 million km2 out of
3.19 million km2, or 96%; 99% of fully/highly protected area;
Figure 1 and Table 3). Outside this region, only 1.9% of U.S.
waters are protected in any kind of MPA (120,976 km2). Thus,
the ecosystems in the current U.S. ocean protection regime are
not representative of an adequate spectrum of marine
biodiversity and habitats (see also Gignoux-Wolfsohn et al., in
review). Our assessment included almost 93% of MPA area
outside the Pacific region, and 22% of that area is fully or
highly protected (Table 3). The other 77% allows moderate- to
high-impact human activities (with 1% unknown). Indeed, some
of these areas may experience human activities at a scale and
impact that are incompatible with the conservation of nature
(e.g., industrial-scale fishing, which is incompatible with
protected areas under IUCN Resolution 066).

All of the U.S. MPAs that we analyzed were at least
implemented, with management of the area “in force” in the
water and not just “on paper” (see Table S3). Most of the zones
we analyzed were in the actively managed category (the most
advanced stage of establishment; 72 of 91; 79%), indicating that
BOX 2 | Case Study: California's Marine Life Protection Act.

TheMarine Life Protection Act (MLPA) created an unprecedented MPA network within California state waters (Carr et al., 2019) including many fully protected State Marine
Reserves (California Department of Fish and Wildlife, 2016; Murray and Hee, 2019). The long process revealed important lessons about how to successfully design and
implement MPAs and the importance of community engagement along with scientific input (Yaffee, 2020).

In 1999, the MLPA mandated California to redesign its existing MPA system, guided by six goals (Gleason et al., 2010; Fox et al., 2013; Sayce et al., 2013). A team of
scientists planned a science-based MPA network and presented this plan to communities. Communities, who were not consulted in these initial MPA designs, reacted so
negatively to the proposed design that the attempt was terminated in 2002 (Scholz et al., 2004; Weible, 2008; Fox et al., 2013). A second attempt was unsuccessful as
well, due to insufficient funding, a lack of organization, and the overwhelming task of planning for the whole state (Fox et al., 2013; Carr et al., 2019).

The third attempt was successfully completed, largely due to increased public participation in the planning process (Sayce et al., 2013), adequate funding through a
public-private partnership, and better organization. It incorporated the best available science to inform network design (Botsford et al., 2014), but it was also supported by
Regional Stakeholder Groups and used an innovative graphic interface for public input (Merrifield et al., 2013). Because community groups were included from the onset, it
was largely well-supported by local communities (Fox et al., 2013; Gleason et al., 2013; Sayce et al., 2013; but see Ordoñez-Gauger et al., 2018). It has also been a
success ecologically – baseline and subsequent monitoring have shown more abundant mature fish in MPAs, increasing connectivity between populations, and fish
spillover fromMPAs into fishing areas (Hamilton et al., 2010; California Ocean Science Trust and California Department of Fish andWildlife, 2013; Caselle et al., 2015; Starr
et al., 2015; Baetscher et al., 2019; Murray and Hee, 2019; Jaco and Steele, 2020; Lenihan et al., 2021).

There can be conflicting management objectives for traditional Tribal harvesting (Berkey and Williams, 2019) and supporting climate resilience and adaptation
(Hofmann et al., 2021). While MLPA regulations recognized cultural and subsistence resource use, some Tribes, especially in the Northern California MPAs, found their
practices unacceptably restricted (Berkey and Williams, 2019). Traditional harvest regulations in some Marine Conservation Areas were amended in response to these
concerns (Berkey and Williams, 2019). The 2016 Master Plan calls for a review of the MPA Management Program in 2022 that will deliberately and formally incorporate
Indigenous knowledge (California Department of Fish and Wildlife, 2016). A recent report to guide the evaluation process stressed the necessity of Tribal partnerships to
co-manage, combine Indigenous knowledge and wisdom with western science, and further evaluate the effects of the MPAs on human wellbeing (Hall-Arber et al., 2021).
Moreover, additional research and action is needed to support climate resilience (Hofmann et al., 2021).
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there is ongoing monitoring, adaptive management, and/or other
elements needed for effective protection (Table S3). These
actively managed MPAs represent 51% (1,625,116 km2) of the
total area covered by the largest 50 MPAs, primarily because the
second and third largest MPAs—Pacific Remote Islands and
Marianas Trench Marine National Monument—are not yet
actively managed. Although protection is “in force” and can
begin to generate conservation outcomes, these areas do not yet
have official management plans that would clearly establish
goals, objectives, and proposed management actions.
Frontiers in Marine Science | www.frontiersin.org 6
The number, size, and level of protection of U.S. MPAs in our
analysis varied widely among regions (Figure 1 and Table 3). For
example, 4.7% of the Northeast region is covered by MPAs of
which about two-thirds is highly protected (in the Northeast
Canyons and Seamounts Marine National Monument, where
commercial crab and lobster fishing will be phased out by 2023)
and one-third is minimally protected (in the Stellwagen Bank
National Marine Sanctuary and the Massachusetts Ocean
Sanctuaries, which allow large impacts from human activities
like fishing; see Table S4). In the Northwest region, 4.2% of the
TABLE 2 | U.S. MPA area (km2) in the largest 50 U.S. MPAs, assessed by level of protection and stage of establishment (excluding proposed/committed and
designated, which are not yet in force on the water) using The MPA Guide.

Stage of Establishment

Implemented Actively Managed Total

Area (km2) Percentage Area (km2) Percentage Area (km2) Percentage

Level of Protection Fully Protected 216,892 1.8% 3,845 0.0% 220,737 1.8%
Highly Protected 1,320,855 10.8% 1,544,648 12.6% 2,865,504 23.4%
Lightly Protected 12,528 0.1% 12,204 0.1% 24,732 0.2%
Minimally Protected 631 0.0% 64,363 0.5% 65,267 0.5%
Total 1,550,906 12.6% 1,625,333 13.2% 3,176,239 25.9%
May 20
22 | Volume 9 | A
Percentages are out of total U.S. ocean area (12,269,628 km2). MPA area assessed in the largest 50 U.S. MPAs but with an unknown level of protection or stage of establishment is 1,730
km2, or 0.05% of this analysis, and is not included in this table.
FIGURE 1 | Percent marine area in any kind of implemented MPA by U.S. Region.
rticle 849927

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Sullivan-Stack et al. U.S. MPAs: Status and Recommendations
area is covered by MPAs of which more than 80% is minimally
protected in the Olympic Coast National Marine Sanctuary
(Table 3). Further, analyses of regions at a more granular level
than what is presented here reveal important gaps in protection
for some areas of coastline and ecoregions (Table S5). For
example, MPAs cover only 0.3% of the mid-Atlantic region
(off the coast of Virginia, Maryland, Delaware, and New
Jersey), and all area included in our assessment was minimally
protected (in the Jacques Cousteau NERR). Single (or few) very
large MPAs drive the overall MPA level of protection for many
regions. Comprehensive assessments of coverage for all MPAs in
each region helps identify areas and habitats where additional
targeted protection could help achieve goals.

Many of the U.S.’s MPAs are very small. The median area is
1.1 km2 (average 3,929 km2), with 48% being less than 1 km2 and
the smallest <0.01 km2 (NOAA, 2020). Furthermore, because
they were developed over time through multiple, sometimes
disconnected, federal, state, and local programs, most U.S.
MPAs are not part of larger, functional ecological networks.
Small MPAs outside of a network are unlikely to achieve
biogeographic objectives such as representativeness, replication,
and connectivity. MPAs that are designed as functioning
networks explicitly consider ecological connectivity, such as
size and spacing of MPAs relative to movement and dispersal
of larvae and adults to support persistent populations of relevant
species (Carr et al., 2017). Some U.S. MPAs, however, were
designed with these objectives in mind, such as the California
MPA network which explicitly considered connectivity,
replication, and representation (Box 2) or the National
Estuarine Research Reserve (NERR) program, which has
representativeness as a core design criterion.

Although here we assessed protection by region, not habitat
or ecosystem type, parallel research has found that U.S. MPAs
have critical gaps. For example, in 2021, an expert working group
completed the first quantitative assessment of U.S. biodiversity
and MPA network representativeness (Gignoux-Wolfsohn et al.,
in review). This work concluded that total MPA area varies
Frontiers in Marine Science | www.frontiersin.org 7
substantially across U.S. regions, and few regions are effectively
protecting biodiversity – with the Pacific Islands regions as closest,
and regions in Alaska furthest, from achieving conservation goals
for representativeness, connectivity, replication, viability, adequacy,
and coverage of important areas for specific taxa (per Convention
on Biological Diversity (CBD) guidance). Some states are moving
toward protecting 30% of state waters, which contain important
habitats and biodiversity. However, MPA coverage is highly
variable across states (Table S2), and state waters represent a
small fraction of federal waters (3 nautical miles vs. 200 nautical
miles) and therefore a small amount of U.S. MPA area. Further,
more and higher quality protection is needed to adequately protect
biogenichabitats like corals (particularly coldwater corals and those
outside of the Pacific Islands), seagrasses,mangroves, shellfish beds,
and deep-sea sponges (Gignoux-Wolfsohn et al., in review). These
habitats are highly vulnerable to multiple stressors, are important
biodiversity components, and some are important blue carbon
reservoirs (Sweetman et al., 2017; Kendrick et al., 2019; Pendleton
et al., 2020).An important next stepwill be todetermine the overlap
between MPA level of protection and stage of establishment with
representative and important areas for biodiversity.

Few data are available on open-ocean pelagic and deep-sea
habitat protection relative to coastal habitats. The vast majority
of protection for U.S. pelagic and deep-sea habitats is in the
Central Pacific marine national monuments (Gignoux-Wolfsohn
et al., in review). Open ocean habitats and species protection is
complicated by the system’s dynamic nature and the difficulty of
delineating specific pelagic habitats, as well as questions of
governance and international jurisdiction. However, protection
of pelagic species like tuna, billfishes, marine mammals, and
turtles is crucial, as many play important ecological roles for
ecosystem structure and functioning (Myers et al., 2007;
Heithaus et al., 2008; Ferretti et al., 2010; Silber et al., 2017;
Bornatowski et al., 2018). Deep sea habitats are also data-poor
and poorly protected in most ecoregions (Morato et al., 2010;
Clark et al., 2012; Kennedy et al., 2019). These systems close
attention to coupled conservation and management efforts
TABLE 3 | Area and percent of MPAs in each U.S. Region that fall within the largest 50 U.S. MPAs (analysis presented here, excluding area for which level of protection
was unknown – 0.05% of analysis), by level of protection.

Region Total Marine
Area (km2)

Total MPA
area (km2)

Percent of Total
Marine Area in MPAs

Percent of Total MPA Area
within this Largest

50 Analysis

Percent of Total MPA Area in this
Largest 50 Analysis

Fully Highly Lightly Minimally

Alaska 3,710,339 24,190 0.7% 93.6% 15.4% 4.3% 68.2% 8.4%
Northeast 514,011 24,324 4.7% 97.8% 0.0% 66.9% 0.0% 33.2%
Northwest (OR, WA) 247,799 10,305 4.2% 93.0% 0.0% 0.0% 0.0% 100.0%
Pacific (HI, Am Samoa, Guam,

CNMI)
5,802,156 3,065,885 52.8% 100.0% 7.0% 92.9% 0.0% 0.1%

Southeast (includes Gulf of Mexico,
Puerto Rico, US Virgin Islands,
& Navassa)

1,421,348 29,549 2.1% 83.2% 8.9% 7.2% 22.3% 59.2%

Southwest (CA)* 573,975 32,607 5.7% 96.5% 0.0% 0.0% 12.1% 87.9%
Grand Total 12,269,628 3,186,862 26.0% 99.7% 7.0% 90.2% 0.8% 2.1%
M
ay 2022
 | Volum
e 9 | Arti
Total marine area in each region represents all ocean areas, including State, Federal, and Territorial waters. The regions are as follows (see Figure 1): Northeast – Maine to Virginia;
Southeast – North Carolina to Texas, including the Gulf of Mexico; Northwest – Oregon, Washington; Southwest – California; Pacific – Hawaii, American Samoa, Guam, and the
Commonwealth of the Northern Mariana Islands; Alaska.
*see Table S7 for a case study from California.
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through ocean governance. The biogeographic processes and
ecological functioning of pelagic and deep sea systems are tightly
linked; activities happening in the water column can impact the
benthic species and habitats these areas are intended to protect.
For this reason, IUCN is opposed to vertical zoning in MPAs
(ICUN and WCPA, 2018). Some U.S. areas are vertically zoned,
such as the Marianas TrenchMarine National Monument, which
only protects the benthos and not the water column above.

Protected areas (PAs) in the Great Lakes are included in the
U.S. National MPA center database and were created to protect
cultural resources like shipwrecks (https://oceanservice.noaa.
gov/facts/mpaloc.html). Indeed, many of these areas may be
OECMs, not PAs, based on their objectives (see Box 1).
Biodiversity decline and defaunation in freshwater ecosystems
has been disproportionately severe (Young et al., 2016; WWF,
2020), and the need for freshwater protection is gaining attention
(Abell et al., 2007; Hedges et al., 2010; Acreman et al., 2020).
Freshwater PAs have been a focus of multiple U.S. agencies and
organizations and they are included in the U.S. National MPA
Center inventory (Pearsall et al., 2013). The Laurentian Great
Lakes hold roughly 21% of the world’s surface freshwater and
support substantial biodiversity (Pearsall et al., 2013). They
contain PAs of multiple types totaling 13,565 km2, varying
from 0% protection in Lake Ontario to 45.5% in Lake Huron,
and 8.2% in the Great Lakes overall (Table S6) (updated from
Parker et al., 2017). Freshwater PAs represent <0.5% of U.S.
MPA coverage. We did not include freshwater PAs in our
assessment of the 50 largest U.S. MPAs, but an assessment of
level of protection could inform re-evaluation of activities
allowed, as no Great Lakes PAs are likely fully protected from
abatable extractive and destructive activities (Parker et al., 2017).
3 MAKING THE MOST OF U.S. MPAS: KEY
FOCAL AREAS

The U.S. has a long history of policies for ocean conservation and
management, and is considering new domestic policies to address
the global climate and biodiversity crises. These include most
recently the target of conserving at least 30% of U.S. lands and
waters by 2030 inExecutiveOrder (EO) 14008.With this target, the
U.S. Government set a national goal for conservation of nature in
recognition of the vital importance of healthy ecosystems for
American well-being, to address the climate and biodiversity loss,
and to increase equitable access tonature.Toachievepolicygoals, as
outlined in the Report “Conserving and Restoring America the
Beautiful” (2021), U.S. policymakers have been charged to “listen to
science and meet the moment” (EO 14008). Our analysis reveals
that the system of U.S. MPAs can be improved to deliver these
outcomes more effectively. Below, we review the state of science for
several crucial focal areas to guide the U.S.’s continuing actions
around MPAs.

3.1 Climate Mitigation and Adaptation
Marine protected areas have important but underutilized
potential for contributing to climate change mitigation and
Frontiers in Marine Science | www.frontiersin.org 8
adaptation on local to global scales (Roberts et al., 2017;
Tittensor et al., 2019; Wilson et al., 2020a; O’Regan et al.,
2021). Furthermore, to continue to meet conservation goals in
the face of current and future climate changes, MPAs should be
designed and managed with the reality of climate impacts in
mind. “Climate-ready” MPAs must be designed to best provide
benefits that match the pace and magnitude of climate change
impacts, which we discuss below. The science to inform the
design of MPAs that can continue to function in a changing
climate and contribute to mitigation and adaptation is only now
emerging. However, even early scientific guidance is crucial for
informing decisions being made now, as expectations for climate
impacts and benefits arise from fundamental, first-principle
understanding of how MPAs affect biological and ecological
attributes that drive physical and biogeochemical processes and
resilience at multiple scales of biological organization (Roberts
et al., 2017; Hofmann et al., 2021).

Climate change mitigation viaMPAs can manifest in physical
and chemical conditions at the individual to system scale. By
fully and highly protecting biogenic habitats, including kelp
forests, coral reefs, oyster reefs, tidal wetlands, and mangroves,
MPAs can maximize climate mitigation services these
ecosystems provide to humans, such as attenuating waves and
buffering storm surges (Løvås and Tørum, 2001; Ferrario et al.,
2014). Macrophytes such as seaweeds may also play a role in
regulating pCO2 and producing oxygen, potentially partly
ameliorating the local effects of ocean acidification and hypoxia
(Hendriks et al., 2014; Koweek et al., 2017; Nielsen et al., 2018;
Hirsh et al., 2020), though such local effects appear to be scale-
and site-dependent and restricted in size. Macrophytes can also
help mitigate the effects of eutrophication and water-borne
diseases that compound climate stressors on coastal ecosystems
and communities; for example, seagrass beds can serve as
nutrient sinks (Aoki et al., 2020) and have been shown to
reduce the prevalence of human and wildlife pathogens (Lamb
et al., 2017). MPAs also safeguard the carbon stored in seafloor
sediments against disturbance from activities like dredging,
mobile bottom fishing gears, future seabed mining, or other
activities that release and remineralize carbon (United Nations
Environment Programme, 2009; Atwood et al., 2020; Sala et al.,
2021). Furthermore, marine macrophyte systems such as
mangroves, seagrass beds, and salt marshes hold, as well as
sequester, large stocks of organic carbon on a global basis, at rates
up to ten times larger than terrestrial systems (Lubchenco et al.,
2020; Macreadie et al., 2021). Protection of marine and coastal
“blue carbon” systems thus represents a key lever for climate
change mitigation in the U.S. (Lubchenco et al., 2020) and should
be considered when identifying areas for protection (Sala
et al., 2021).

In addition to mitigation, MPAs can enhance adaptive
capacity at organismal, population, community, and ecosystem
levels (Kroeker et al., 2019; Hofmann et al., 2021). Essentially,
MPAs can provide a portfolio effect against climate-induced
stressors and disturbances. Increased organism body sizes can
confer greater individual tolerance to thermal and other climate
stressors (Micheli et al., 2012; Barneche et al., 2018). Larger
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population sizes with a broader age distribution, as commonly
found in fully and highly protected MPAs (Lester et al., 2009;
Baskett and Barnett, 2015), may speed up recovery following
disturbance including via maintenance of greater demographic
and genetic diversity (Blasiak et al., 2020) and of reproductive
output and juvenile recruitment (Micheli et al., 2012; De Leo and
Micheli, 2015). Community and ecosystem resilience can be
provided by maintenance of taxonomic and functional
diversity as well as trophic and other species interaction
linkages; for example, after a marine disease outbreak
decimated populations of the predatory sea star Pycnopodia
helianthoides along the U.S. west coast, other large predators
(California sheephead and California spiny lobsters) inside
MPAs suppressed purple sea urchin density and allowed
canopy-forming kelp and understory algae to grow (Eisaguirre
et al., 2020). Outside of MPAs, where sheephead and spiny
lobster are smaller and less abundant due to fishing pressure,
urchin populations grew dramatically, leading to kelp loss and
the formation of urchin barrens (Eisaguirre et al., 2020). Fully
and highly protected areas that minimize anthropogenic impacts
provide the best chance for climate resilience, especially at
organismal and population levels (Grorud-Colvert et al., 2021).

A well-designed MPA network can provide additional
resilience through the protection of replicate and connected
habitats or those that are essential to different life stages,
promoting adaptive capacity and providing insurance against
catastrophic disturbance, the risks of which rise with climate
change (Allison et al., 2003; Sheehan et al., 2021). Across a
network, many independently fluctuating populations
can provide stability to the metapopulation (Anderson et al.,
2015; Hammond et al., 2020). Well-designed networks of fully
and highly protected MPAs – with attention to effective design
principles such as connectivity, representation, and replication –
working in concert with effective management outside their
borders are crucial to ensure MPAs effectiveness lasts. These
networks can provide additional resilience to species undergoing
climate-induced range shifts, but the statistical effect size for
species targeted by fisheries will depend on the extent to which
MPAs reduce total fishing pressure (Fuller et al., 2015).
Furthermore, recent models show how MPA network designs
that take environmental conditions into account can improve
outcomes. Modeling in coral reef systems revealed that MPA
network designs that included warm, cool, and intermediate reefs
(relative to only single or paired warm and cool environmental
exposures) worked best to preserve coral cover (Walsworth et al.,
2019). The authors credit active dispersal among reefs in the
model, and the importance of warm reefs to provide adaptive
power, moderate reefs to provide stepping stones, and cool reefs
to provide better habitats after the ocean has warmed.
Understanding how climate is likely to affect an area (e.g.,
considering climate velocity; Brito-Morales et al., 2018) will
allow MPA design characteristics and adaptive management at
the individual and network scale to address specific climate
stressors and their outcomes, including shifts in species
distributions, community composition, or connectivity
(Rassweiler et al., 2020). For example, if protection is geared
Frontiers in Marine Science | www.frontiersin.org 9
towards seagrass beds for blue carbon, adaptive MPAs should
account for shifting distributions not only with warming waters,
but also with sea level rise (McHenry et al., 2021) and ocean
acidification (Chan et al., 2019).

The timeline for creating or modifying MPAs in the U.S. does
not align with the increasing severity and speed of climate change
impacts on marine ecosystems. Furthermore, inclusion of human
needs and interests represents a major challenge in designing and
implementing climate-ready MPAs (Basurto, 2013). Currently,
very few MPAs or MPA networks globally integrate climate
change into planning and design (Tittensor et al., 2019; O’Regan
et al., 2021); however, some useful examples exist, including the
Greater Farallones National Marine Sanctuary in California,
which incorporates a climate vulnerability assessment,
recommendations, and implementation plan explicitly in its
management plan (U.S. Department of Commerce et al., 2016);
a recent assessment of climate impacts and recommendation for
actions for supporting climate resilience of the California MPA
network (Hofmann et al., 2021); and Papahānaumokuākea
Marine National Monument, which produced one of the first
climate vulnerability assessments that incorporates Indigenous
perspectives (Kikiloi et al., 2017).

Governance in a changing ocean calls for novel institutional
arrangements (Spalding and de Ycaza, 2020) and careful
consideration of equity for those most vulnerable (Bennett
et al., 2021). Emerging knowledge about the role of
biodiversity and healthy coastal ecosystems in “buffering”
against climate change impacts can help inform climate-ready
governance solutions for which MPAs play a critical role. For
example, polycentric governance describes a structure where
multiple, semi-autonomous, overlapping and coordinated
institutions are responsible for decision-making (Ostrom et al.,
1961; Ostrom, 2005; Yadav and Gjerde, 2020). Applied to MPAs,
polycentric governance may represent a unique opportunity to
match the recommended ecological and spatial modularity of a
climate-ready MPA with the appropriate policy-based enabling
conditions (Carlisle and Gruby, 2018; Brodie Rudolph et al.,
2020). It is critical to consider the ecological design principles
and implications for marine ecosystems, but also the overarching
governance structures and management processes that can
support effective MPAs and associated natural and
social outcomes.

3.2 Justice, Equity, Inclusion, and Access
3.2.1 Supporting Full Diversity of Local Communities
to Engage, Lead, and Benefit
An effective MPA depends on input, buy-in, and engagement
from surrounding communities (Pollnac et al., 2001; Voyer et al.,
2015; Basurto et al., 2016; Gollan and Barclay, 2020). Many
groups, particularly tribal rights holders or local communities,
are often systematically excluded from the MPA decision-
making process, through top-down mandates, including at the
Federal level. For a recent comprehensive review of equity issues
in marine conservation, see Bennett et al. (2021). Excluded
communities are often those that have suffered the greatest
environmental injustices, such as exposure to environmental
May 2022 | Volume 9 | Article 849927

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Sullivan-Stack et al. U.S. MPAs: Status and Recommendations
hazards, and have the least access to natural spaces and resources
(e.g., people of color, low-income communities, Indigenous
peoples; Reineman et al., 2016; Österblom et al., 2020;
California Ocean Science Trust, 2021). Excluding these groups
not only perpetuates systemic inequity and injustice but sidelines
a wealth of leadership, wisdom, knowledge, and creativity that is
needed to address urgent conservation challenges. Including and
respecting diverse voices and perspectives is essential to move
effective stewardship forward. Doing so will shape the questions
that are asked, the concerns that are defined and addressed, and
the solutions that are proposed to restore and protect the ocean,
its resources, and equitable access to healthy ocean spaces. The
Marine Life Protection Act process in California offered valuable
lessons learned on the importance of involving local
communities in MPA decision-making processes (see Box 2).

Furthermore, the positive biological and ecological outcomes
of MPAs can drive resilience benefits for human wellbeing,
especially for vulnerable populations living near coastlines.
These benefits range from protection of community and
physical infrastructure from storms to long-term support for
livelihoods, cultural identity, and physical, mental, and
emotional health (Ban et al., 2019b; Naidoo et al., 2019; Jones
et al., 2020; Marcos et al., 2021). Designing and implementing
MPAs for climate resilience also requires considering the needs
and values of local communities and providing opportunities for
local action to support climate justice; in some cases, these values
and needs may involve trade-offs. Careful consideration must be
given to who has the rights and responsibilities, and who is
afforded the opportunity, to address these trade-offs in a
given place.

3.2.2 Respecting and Empowering Indigenous Rights
and Leadership
Indigenous peoples in the U.S. and worldwide are the original
conservation stewards of marine spaces, with rights,
responsibilities, wisdom, knowledge, and connections to the
places they have lived in and sustained for generations
(Johannes, 1978; Berkes, 2018; Ban et al., 2019b; Lukawiecki
et al., 2021; Office of Hawaiian Affairs et al., 2021). MPA
managers at all governance levels have the responsibility and
opportunity to work in partnership with and, where appropriate,
enact co-management with Indigenous peoples (Cinner et al.,
2012). U.S. federal agencies, specifically, have a legal
responsibility to respect treaty rights and protect Tribal
resources, and to consult with federally recognized Tribes on
policies with Tribal implications. However, beyond this legal
obligation, the deep and long-term connections and knowledge
that Indigenous peoples hold for their lands and waters are vital
for informing effective long-term management undertaken by
federal and state agencies. For example, traditional knowledge of
Bering Sea ecosystems held by Indigenous communities is now
incorporated into the North Pacific Fisheries Management
Council’s Bering Sea Ecosystem Plan (Raymond-Yakoubian
et al., 2017; North Pacific Fisheries Management Council, 2019).

Moving forward in mutual, trust-based relationships and
partnerships between Indigenous peoples, management
agencies, and stakeholders is critical to the success of MPAs
Frontiers in Marine Science | www.frontiersin.org 10
and must be developed and sustained over the long-term, often
beyond typical research, funding, and project timelines. The
California statewide MPA network was broadly criticized and
legally challenged for not addressing the rights of coastal Tribes
and has worked to strengthen these partnerships and elevate the
role of Tribes in natural resource management in recent years
(Box 2). Indigenous groups, including the Chumash in
California and the Aleut communities of the Pribilof Islands in
Alaska, have expressed interest in establishing new MPAs via
nominations for National Marine Sanctuary status to protect
their traditional waters and address their conservation and
sustainable use priorities (nominate.noaa.gov); NOAA has
announced plans to designate the Chumash Heritage National
Marine Sanctuary. In Hawaii, Papahānaumokuākea Marine
national monument was named to commemorate the union of
two Hawaiian ancestors – Papahānaumoku andWākea – and is a
place of great spiritual importance to Native Hawaiians (Kikiloi,
2010). Native Hawaiian leadership worked directly towards
implementing this National Monument, and it is now co-
managed by the Office of Hawaiian Affairs, along with state
and federal partners, with management actively guided by Native
Hawaiian knowledge systems, values, and practices (Kikiloi et al.,
2017; Office of Hawaiian Affairs et al., 2021). Currently, Pacific
Islanders, including Hawaiians, Chamorros, Samoans, and other
native peoples inMicronesia, are stewards of more than 99% of the
area currentlyprotected inU.S.MPAs.Recognitionand inclusionof
Indigenous knowledge, leadership, and stewardship is crucial for
directing and informing MPA decision-making, including design,
monitoring, management, monitoring, and enforcement.

3.3 Other Sectors
Implementing new or more highly protected MPAs has the
potential to help meet, or conflict with, societal needs across
other sectors (see below). Understanding these conflicts and
opportunities relies on deepening scientific understanding of
how specific activities may impact marine ecosystems and their
services to people, and whether those impacts are compatible
with the conservation goals of MPAs. Historically, the fishing
sector has been the industry stakeholder that has most actively
engaged with MPAs (see below “Fisheries sector”). However, as
global and U.S. blue economies diversify and accelerate,
interactions between MPAs and industry will necessarily
diversify (Jouffray et al., 2020; Posner et al., 2020). Navigating
these dialogues and decisions requires attention to whether and
how goals can align across different area types (see Box 1).
OECMs in particular may incentivize cooperation between
sectors, bringing new voices into conservation decision-making
(Laffoley et al., 2017a; Gurney et al., 2021; Gissi et al., 2022), for
example by giving OECM recognition to areas that are managed
for fisheries or renewable energy and also provide meaningful
outcomes for biodiversity conservation. The “effectiveness”
criterion is critical for identifying OECMs (Laffoley et al., 2017;
Gurney et al., 2021). Aligning diverse sectors with the
biodiversity protection goal of MPAs is crucial to stemming
biodiversity loss and requires careful planning. Below we outline
considerations for certain sectors that can affect, and be affected
by, MPAs.
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3.3.1 Fisheries Sector
Effective MPAs and sound fisheries management are both
essential tools for ocean management and provide
complementary benefits (see Box 1). Fisheries management
approaches can include area-based measures, including
bottom-trawling closures and essential fish habitat
conservation areas. By definition, MPAs focus on long-term
protections for biodiversity and ecosystems, whereas fisheries
management aims to sustainably manage commercial and
recreational fisheries stocks for optimum, sustained yield of
targeted species. Both have an important role to play in
ensuring healthy ecosystems and human communities.
Perceptions of a false dichotomy between fisheries
management “vs” MPAs impedes progress towards sustainable
management, a common goal for people who identify as fishers,
conservationists, or both.

Although most existing U.S. MPAs were not purposefully
created to benefit fisheries, they can be designed to do so (White
et al., 2008; Gaines et al., 2010; Cabral et al., 2019; Sala et al.,
2021). The most readily demonstrated benefit of MPAs to
fisheries is the small-scale spillover effect (Kellner et al., 2007),
with increased abundances and catches near MPA borders
documented around the world (Roberts et al., 2001; Russ et al.,
2004; Abesamis and Russ, 2005; Halpern et al., 2009; Kerwath
et al., 2013; Di Lorenzo et al., 2020; Lenihan et al., 2021).
Individual fish in well-protected MPAs reach larger sizes than
in areas exposed to fishing mortality and larger fishes have
significantly higher reproductive potential than smaller
individuals (Baskett and Barnett, 2015; Marshall et al., 2019).
MPAs that successfully protect spawning aggregations can
significantly benefit surrounding fisheries through the export
of eggs and larvae outside of the protected area (Beets and
Friedlander, 1999; Erisman et al., 2015). However, region-wide
fisheries benefits of MPAs may be difficult to detect empirically,
even when they occur (Ovando et al., 2021).

Certain coastal U.S. MPAs have benefited adjacent fisheries,
both commercial (Murawski et al., 2000; Murawski et al., 2005;
Kay et al., 2012) and recreational (Roberts et al., 2001; Stamoulis
and Friedlander, 2013). For example, there were a
disproportionate number of world record size fishes caught in
the waters adjacent to Merritt Island National Wildlife Refuge in
Florida (62% of record-size black drum, 54% of red drum, and
50% of spotted sea trout caught between 1939 and 1999; Roberts
et al., 2001). After an MPA network was established protecting
35% of the West Hawai’i coast from aquarium fish harvest, target
species and fishery value increased (Friedlander et al., 2008;
Grorud-Colvert et al., 2014). The more recent expansion of large
Marine National Monuments in the Pacific Ocean has resulted in
only minor species-specific catch changes (Gilman et al., 2020)
and no changes to U.S. commercial longline fisheries catch rates
(Lynham et al., 2020), although effects may be better detected
when more time has elapsed since MPA implementation. The
creation of large-scale oceanic MPAs by other nations has
resulted in increases (Boerder et al., 2017; Bucaram et al.,
2018) or no changes (Curnick et al., 2020) to commercial
catches and fisheries profits for highly mobile pelagic species.
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Not all U.S. MPAs yield clear fisheries benefits and instead
can have negative impacts or no appreciable impact (Guenther
et al., 2015; but see Lenihan et al., 2021). An MPA’s ecological
and social impact on fisheries can involve important tradeoffs,
especially in the short-term and across different user groups. For
example, there were negative effects of two Gulf of Mexico MPAs
on catches in a reef-fish fishery 4.5 years after implementation,
though life history strategies of targeted species suggest that
potential MPA benefits may not have had time to accrue (Smith
et al., 2006). Furthermore, implementation of MPAs can increase
conflict, particularly among fishers and other interested groups;
understanding how to manage different groups’ expectations and
mitigate negative conflict is crucial to positive outcomes (Ban
et al., 2019a). Designing MPAs to reduce conflict may impact
effectiveness. For example, prior to MPA implementation,
densities of economically important sea cucumbers in the
Galapagos were higher in fished zones than in areas set aside
as “no take”, a pattern that may result from siting MPA zones in
resource-poor areas to minimize impacts on fisher livelihoods
(Edgar et al., 2004).

While U.S. marine conservation organizations typically
advocate strongly for MPAs, different fisheries groups have
different perspectives on MPAs. Some have advocated for their
specific use, while others are opposed. For example, in Biscayne
National Park, a proposed fully protected area employing
scientific design principles and with broad public support was
framed by certain recreational fishing groups and the State of
Florida as an either-or proposition – either enhanced fisheries
management or a fully protected MPA – when both could be
implemented for positive outcomes for depleted species
(Box S1).

Improved partnership, communication, and knowledge-
sharing across sectors can help resolve this perceived
dichotomy. For example, long-term stakeholder engagement in
collaborative research can give members of different sectors first-
hand experience with MPA outcomes and improve research
outputs, for example as local fishers share on-the-water
knowledge and experience (Mason et al., 2020). The California
Collaborative Fisheries Research Program has coordinated a 15-
year partnership among volunteer fishers, researchers, the fishing
industry, and resource managers to monitor groundfishes in
California’s MPA network. Co-creating collaborative monitoring
protocols has increased communication and trust among sectors
and the availability and scale of fisheries- and MPA-relevant data
(Yochum et al., 2011), ultimately improving participating fishers’
opinions about MPAs (Mason et al., 2020).

3.3.2 Energy Sector and Mining
Diverse offshore energy development is expanding rapidly in the
U.S. and management approaches to address this growth are in
the early stages. Integrating energy platforms with MPAs
represents both an opportunity and a potential conflict.
Offshore energy platforms – oil, wind, solar, or hydrokinetic –
have been suggested as “de facto” MPAs (or potential OECMs)
because they often reduce or exclude other human uses, and can
attract species by providing habitat structure or increased prey
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productivity (Schroeder and Love, 2002; Ashley et al., 2014).
However, impacts exist, including those related to noise,
electromagnetic fields, turbine collision, entanglement,
increased vessel traffic, benthic habitat disruption, and
energetic costs associated with platform avoidance (Furness
et al., 2013; Bailey et al., 2014; Bergström et al., 2014; Schuster
et al., 2015). More research is needed on renewable energy
structure impacts on marine biodiversity and fisheries,
particularly as U.S. targets for offshore wind increase (e.g., The
White House Briefing Room, 2021). Oil platforms represent a
considerable potential impact, as oil spills can have long-lasting
impacts, and oil and gas extraction exacerbates climate change.
Flower Garden Banks National Marine Sanctuary in the Gulf of
Mexico is in an area with high oil and gas activity, including
within its borders, with associated threats to biodiversity
conservation (US Department of Commerce, National Oceanic
and Atmospheric Administration, and Office of National Marine
Sanctuaries, 2012). Decommissioning oil and gas platforms
should be done strategically to minimize ecosystem
impacts–”rigs-to-reefs” programs, for example in the Gulf of
Mexico and California, can convert some portions of platforms
into artificial reefs provided there is careful attention to weighing
benefits (e.g., habitat preservation, fish biomass) vs. potential
costs (e.g., pollutant leakage from capped wells) (Meyer-Gutbrod
et al., 2020).

Deep seabed mining in the U.S. is in an exploratory phase,
and centers around rich mineral resources in the Central
Pacific – including close to existing U.S. MPAs, such as the
Pacific Remote Islands Marine National Monument. Seabed
mining is not compatible with MPAs, since environmental
impacts from mining and recovery times for biological
communities are likely to be significant and may lead to
permanent loss of species and ecosystem function (Van Dover,
2014; Levin et al., 2016; Boetius and Haeckel, 2018; Haugan et al.,
2020). U.S. exploitation of seabed mineral resources in areas
beyond national jurisdiction would depend on ratification of the
1982 Law of the Sea Convention and the 1994 Implementation
Agreement, treaties that govern the prospecting, exploration and
exploitation of resources designated as the “common heritage of
mankind” (Willaert, 2021). Scientists have suggested that the
International Seabed Authority implement high seas MPAs to
protect key areas before approving any exploitation or new
exploration contracts (Wedding et al., 2015). Any future
seabed mining will require careful consideration to identify
non-MPA locations and methods that minimize ecosystem
impacts. Whether acceptable impact levels are possible is
unknown. In the meantime, hundreds of ocean researchers
have called for a pause on seabed mining outright (http://www.
seabedminingsciencestatement.org). Oregon and Washington
states have already banned seabed mining for hard minerals in
state waters, and California has introduced a bill to do so.

3.3.3 Tourism and Recreation
The tourism sector can offer co-benefits with MPAs. Fully
protected does not imply no-entry, and snorkelers, scuba
divers, and others typically prioritize high biodiversity and
large fishes and other marine fauna, all of which are important
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outcomes of MPAs (Sala et al. , 2013). MPA-driven
improvements of habitats, fish abundance and biomass, and
species diversity increase the demand for diving and divers’
willingness to pay to dive inside MPAs (Bhat, 2003; Grafeld
et al., 2016; Shideler and Pierce, 2016). Higher levels of
protection in MPAs can also result in higher support and
perceived value by the general public relative to minimally
protected MPAs (Turnbull et al., 2021). Hawaiʿi’s Hanauma
Bay is one of the most visited MPAs in the world (>1 million
people/year in 0.41 km2) and had a net present value of $650
million in 2004 (van Beukering and Cesar, 2014). Molokini
Shoals MPA has over 350,000 visitors/year in 0.35 km2.
Displacement of important reef-associated predators occurs
during peak hours of human visitation, which suggests the
natural ecosystem function is compromised (Filous et al.,
2017). Indeed, because of the high impact of non-extractive
use, these MPAs would be considered lightly protected. Although
non-consumptive uses like tourism are typically less impactful
than many extractive activities, careful attention is needed to
minimize impacts from potentially destructive activities like
anchoring, infrastructure, dumping, and high-density
recreation (Grorud-Colvert et al., 2021).

3.3.4 Mariculture
The interaction of MPAs and marine aquaculture (mariculture)
has received limited research attention. Some mariculture may be
compatible with the conservation objectives of MPAs, depending
on the type, scale and practices of the operation, intensity of
cultivation, siting of the farm, and whether the cultivated species
is native to the region (Gentry et al., 2017; Laffoley et al., 2017b;
Le Gouvello et al., 2017; Gentry et al., 2020; Naylor et al., 2021).
In general, unfed mariculture (e.g., seaweed, bivalves) has lower
environmental impacts than fed mariculture and has high but
underused potential to contribute to nutritional security globally
(Gephart et al., 2021; Naylor et al., 2021). Further, these types of
mariculture can also contribute to habitat restoration
(Theuerkauf et al., 2019) and other important ecosystem and
cultural services (Alleway et al., 2019; Gentry et al., 2020).
However, unregulated and impactful mariculture development
can negatively impact environments and lead to social and
economic conflicts (Naylor et al., 2000; Alleway et al., 2019).
The U.S. mariculture sector is likely to grow in the coming
decade (e.g., NOAA is currently identifying Aquaculture
Opportunities Areas based on scientific information and
community input to accelerate nearshore aquaculture; https://
www.fisheries.noaa.gov/national/aquaculture/aquaculture-
opportunity-areas). Development of coordinating mechanisms
and best practices that carefully consider impacts is necessary to
guide mariculture activities within MPAs (Lester et al., 2021).

3.3.5 Marine Transportation
Shipping is regulated under the International Maritime
Organization (IMO) treaties, thus it is difficult to regulate
vessels traversing individual MPAs. However, shipping can
have important impacts on biodiversity, such as through ship
strikes or noise interference with ecologically-important sounds,
such as marine mammal communication and echolocation (e.g.,
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Erbe et al., 2019; de Jong et al., 2020). Some researchers and MPA
managers have worked with shipping companies and the IMO to
reduce biodiversity impacts. For example, research on important
feeding areas for humpback, finback, and North Atlantic right
whales in the Stellwagen Bank National Marine Sanctuary
resulted in the IMO moving the shipping lane northward,
resulting in much lower whale interactions and risk of collision
(Office of National Marine Sanctuaries, 2020). NOAA also
regulates the speed of large ships in seasonal management
areas of importance for right whales, which overlap with
portions of the Sanctuary (Office of National Marine
Sanctuaries, 2020). Similar efforts are underway in National
Marine Sanctuaries and other regions on the west coast
(Abramson et al., 2011), for example through the IMO-
adopted Area To Be Avoided in the Channel Islands National
Marine Sanctuary (Huntington et al., 2019), and the voluntary
2017 Vessel Speed Reduction program (https://channelislands.
noaa.gov/management/resource/ship_reports.html). Further,
ships in California ports will soon be subject to new Ocean-
Going Vessels at Berth requirements for shore-based power,
lowering emissions (https://ww2.arb.ca.gov/our-work/programs/
ocean-going-vessels-berth-regulation). These individual actions
are making a difference, but more research and a holistic
approach are needed to minimize transportation impacts
on biodiversity.

3.4 Pressing Scientific Research Needs
Further research in key areas could help enable MPAs achieve
their full potential. The following needs provide a useful starting
point to guide research priorities.

a. Improve baseline understanding of U.S. marine biodiversity:
Ecological monitoring efforts should prioritize building better
understanding of biodiversity status, distribution, and trends
both inside and outside of MPAs of varying protection levels
across the breadth and depth of the U.S. EEZ (Gignoux-
Wolfsohn et al., in review), and from there build a reliable and
transparent process for assessing and enhancing MPA
representativeness and connectivity. This work will require
more coordinated and comprehensive monitoring and
evaluation (e.g., through the NOAA MPA Center – see
Recommendations below), and could benefit from new
technologies (e.g., eDNA, remote sensing, and computer
vision techniques; Duffy et al., 2013).

b. Establish links between conservation design, management,
equity, and outcomes: Many ecological outcomes of fully and
highly protected MPAs are well documented. More research
is needed across the full spectrum of MPA levels of protection
to better understand and to improve the equity of the diverse
range of social, economic, cultural, and ecological outcomes
(Grorud-Colvert et al., 2021) and in OECMs, especially in the
face of climate change. This may be achieved through MPA
management and review processes that explicitly include
human dimensions monitoring and research.

c. Improve coordination with other sectors: U.S. ocean spaces
are becoming increasingly crowded with diverse human uses,
and comprehensive research is needed to ensure that MPAs
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and their goals complement and are not compromised by uses
by other sectors such as renewable energy, tourism,
mariculture, and fisheries (see Section Making the Most of
U.S. MPAs: Key Focal Areas above). For the fisheries sector in
particular, future natural and social science research should
focus on incorporating fisheries management in MPA design
and MPAs into fisheries management, in particular
addressing the distribution of costs and benefits of MPAs to
fishers (Weigel et al., 2014). Research could identify contexts
where lower levels of protection for biodiversity might better
balance conservation and fisheries goals, assuming
sustainable extraction practices. Coordinated data gathering
and sharing can inform and streamline both MPA and
fisheries management efforts. MPA monitoring data can
inform fisheries stock assessments. Data used for stock
assessments, particularly life history information, can
inform design, monitoring, and evaluation of MPAs (Hall-
Arber et al., 2021). This will be particularly important for
fishery-based OECMs, which must also demonstrate
conservation benefits (Gurney et al., 2021).

d. Advance scientific understanding of the role of MPAs for
building climate resilience: Long-term monitoring data (both
ecological and environmental) provide opportunities to
understand how MPAs can specifically impart climate
resilience, including by identifying areas of refuge, resilience,
and vulnerability within existing MPA networks and designing
newMPAswith climate resilience,mitigation, and adaptation in
mind (e.g., see Hofmann et al., 2021 and recommendations
therein). For example, Oregon’s fully protected marine reserves
are serving as sentinel sites for monitoring ecosystem-level
impacts of climate change (Chan et al., 2019). Further
research is needed on resilience in the face of environmental
stress encountered by populations inside versus outside MPAs
and howMPAs may intersect with dynamic management tools
such as temporary closures and mobile MPAs (see below).
Active management interventions (e.g., habitat restoration,
assisted migration, and species reintroduction in or around
MPAs) that are most effective for mitigating and conferring
resistance to and/or recovery from climate disturbance should
be identifiedand implemented (Hofmannet al., 2021).There is a
particular need for research outside of coral reef ecosystems
(Wilson et al., 2020b).
3.5 Innovations in Science, Technology,
and Governance
Significant recent effort focuses on understanding how
technology can improve MPA outcomes, such as use of
satellite data and analytics for MPA monitoring and
enforcement (Witkin et al., 2016; Elahi et al., 2018; Bradley
et al., 2019; White et al., 2020; Cavanaugh et al., 2021), eDNA for
biodiversity monitoring and enforcement (Gold et al., 2021;
Willette et al., 2021), Autonomous Underwater Vehicles for
biodiversity assessments (Ferrari et al., 2018), and improved
seafloor mapping techniques (Wölfl et al., 2019). These
technological innovations are advancing MPA research and
management at an unprecedented pace.
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New governance structures can complement advances in
science to confront emerging challenges with climate change
and as human uses and priorities shift. MPAs are potential tools
for meeting the goals of the Paris Climate Agreement. Many
states have already framed their Nationally Determined
Contributions with oceans in mind, including through fisheries
management, marine ecosystem preservation, and coastal
protection. In particular, protecting “blue carbon” ecosystems
can contribute significantly to national level mitigation
(Taillardat et al., 2018) since these coastal ecosystems sequester
and store disproportionate quantities of organic carbon
(Lovelock and Duarte, 2019).

One emerging innovation in science and governance is
dynamic conservation areas. Marine species’ ranges are already
shifting with climate change, and species may occur outside of
the MPA boundaries designed to protect them. For some species,
adaptive MPAs plus the flexible boundaries of mobile MPAs
could follow species through space and time and provide effective
protection, with less area off limits to human uses (Dunn et al.,
2016; Hazen et al., 2018; Maxwell et al., 2020). While no mobile
MPAs exist yet, dynamic ocean management (Maxwell et al.,
2015) is increasingly applied across a variety of sectors, including
fishing and shipping. Mobile MPAs focus on protection across
sectors, and could describe daily or weekly boundaries using
habitat modeling techniques (Hazen et al., 2017) and acoustic or
aerial surveys (Van Parijs et al., 2009; Wiley et al., 2013),
particularly for the protection of iconic species (Maxwell
et al., 2020).

Transnational and high seas MPAs present another
opportunity for innovation (Boerder et al., 2019) and
connectivity with existing U.S. MPAs, and highlight additional
priority areas. Marine species do not adhere to national
boundaries; their distributions and migrations can span ocean
basins and multiple countries’ jurisdictions while encountering a
variety of threats, including concentrated fishing pressure
outside of MPAs and in the high seas (White et al., 2017;
Harrison et al., 2018; Boerder et al., 2019; Roberson et al.,
2021). High seas conservation planning is currently underway
with negotiations for a new legally binding instrument under
UNCLOS for the biodiversity conservation in Areas Beyond
National Jurisdiction, opening the door to MPAs in the high
seas (Druel and Gjerde, 2014; Visalli et al., 2020). The world’s
largest MPA, the Ross Sea in Antarctica, was designated in 2016
by consensus of 25 States, is highly protected and is the first
large-scale high seas MPA, providing a model for future high seas
MPAs in ecologically important areas (Sykora-Bodie and
Morrison, 2019; Brooks et al., 2021). Another area of high
ecological value is the Sargasso Sea, including waters along the
U.S. east coast (Laffoley et al., 2011). The Hamilton Declaration
established by Bermuda and the U.S. (and now signed by ten
additional adjacent countries) has formalized collaborative
international efforts to conserve the Sargasso Sea, though the
region is not yet an MPA (Freestone and Morrison, 2019).

Similarly, transnational cooperation highlights both existing
U.S. MPAs and additional priority areas. The Gulf of Mexico
encompasses national waters of the U.S., Mexico and Cuba and
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contains a large number of relatively small MPAs primed for
network coordination (Nash and McLaughlin, 2014). The highly
productive California Current along the west coast of U.S.,
Canada, and Mexico spans both well protected and largely
unprotected swaths (Di Lorenzo, 2003; Klinger et al., 2017;
Aburto-Oropeza et al., 2018). The underrepresented Arctic also
has high potential for transnational MPA cooperation (Lalonde,
2010), particularly as sea ice loss opens the region to
increasing exploitation.

Transnational cooperation has long been practiced in the
Great Lakes. The Great Lakes Fishery Commission, an agency
established in 1954 by the U.S. and Canada, facilitates
cooperative fishery management among state, provincial,
Tribal, and federal agencies and recognizes the potential
benefits of freshwater PAs (Hedges et al., 2010). While there is
no current comprehensive, collaborative protection plan in place,
the Great Lakes Water Quality Agreement (Governments of the
United States and Canada, 2012) and related planning and
governance structures provide a framework for such a
coordinated approach (Parker et al., 2017).
4 CONCLUSIONS AND
RECOMMENDATIONS BASED ON
SCIENTIFIC EVIDENCE

To make the most of U.S. MPAs, coordinated action is needed,
both to establish the types of MPAs necessary for achieving the
U.S.’s stated goals (“Conserving and Restoring America the
Beautiful 2021”, 2021) and to ensure that established MPAs are
effective, climate resilient, equitable, compliment other sectors,
and support research and innovations in technology and
governance. Below we outline specific recommendations that
have emerged from our analysis of existing U.S. MPAs:

1. Establish more, and more effective, MPAs. These must have
protection levels aligned with site-specific goals to conserve
biodiversity and benefits for people, including climate
mitigation and adaptation. This goal includes establishing
more fully and highly protected areas for greatest
conservation outcomes, re-evaluating existing MPAs that
are poorly protected, and making sure all MPAs are
actively managed to optimize positive results. Achieving
this objective may involve altering protections for MPAs
that already exist, such as enhancing the level of protection
of some National Marine Sanctuaries or National Estuarine
Research Reserves or zones therein (e.g., by restricting
extractive and destructive uses in these areas), as well as
establishing new MPAs in areas that are lacking area-based
protection but where biodiversity conservation is particularly
important. This prioritization may include areas important
for ecological, cultural, social, or climate reasons, and areas
where other protections already exist (e.g., through fisheries
management tools such as Essential Fish Habitat) but are not
permanent or comprehensive of all impactful human
activities.
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2. Establish new highly and fully protected, networked MPAs
with better representation of U.S. marine biodiversity,
regions, and habitats. This ensures critical species,
habitats, and areas of cultural importance have broad-scale
and sufficient protection. An analysis of gaps in existing
MPAs should be coupled with an understanding of their level
of protection to identify additional protection needed to
render current MPAs as effective, connected, functioning
networks. Understanding of existing biodiversity coverage
in MPAs in the U.S. should guide and prioritize expansion of
current protection (Gignoux-Wolfsohn et al. in review). Fully
and highly protected MPAs are overwhelmingly concentrated
in the Central Pacific. These large MPAs have immense value
and should be celebrated. However, the disproportionate
share of MPA stewardship by Pacific Islanders in the U.S.
and associated territories should be recognized and rectified
by increasing the share of highly and fully protected MPAs in
diverse ecosystems elsewhere in the U.S. This action is
imperative, not only to achieve effective protection for
biodiversity but to bring the benefits of MPAs within reach
of diverse communities.

3. Improve attention and commitment to equity in new and
existing MPAs. This includes explicit attention to an
inclusive process, guaranteed access, and shared benefits.
This requires shared leadership and engagement with
Tribes and diverse stakeholders, and support for
community-led conservation efforts particularly in
vulnerable communities, such as through providing
government-subsidized resources. Expand processes for
prioritizing and expediting MPAs nominated and
supported by Indigenous and other historically excluded
communities, including developing best-practice guidelines
for Indigenous-created and managed (or co-managed)
MPAs. These communities/stakeholders should be
positioned to advise on the America the Beautiful initiative
to equitably achieve effective protection for biodiversity and
climate resilience as well as access to ocean spaces and
resources, including through a level of protection that
aligns with stakeholder and rights holder goals. Improved
environmental education and engagement within
communities can play a key role in MPA effectiveness.

4. Track and report progress towards not only a single
coverage target, but also U.S. MPAs’ ability to deliver
desired outcomes based on level of protection. The
intention to create an American Conservation and
Stewardship Atlas for tracking progress on the goals in the
“Conserving and Restoring America the Beautiful” report
(2021) sets the path for an interactive map of protected and
conserved areas in the U.S. MPA outcomes depend on the
types of activities that are allowed and their impact. Using
existing frameworks such as The MPA Guide (Grorud-
Colvert et al., 2021) helps identify those activities and
clarify the level of protection, linking levels to the different
types of conservation outcomes expected from different types
of MPAs. This approach is similarly useful for tracking the
outcomes provided by other non-MPA conserved areas, such
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as OECMs, as the U.S. works to achieve the national 30x30 (at
least 30% by 2030) target.

5. Ensure MPAs are durable so they will continue to work in
the future. Research and actions are needed to understand
and support the role of MPAs in conferring climate resilience,
and to guide the establishment and management of climate-
ready MPAs (e.g., see recommendations in Hofmann et al.,
2021). Governance structures and long-term capacity,
including funding support for adequate staffing,
monitoring, and adaptive management, should be
established and strengthened to ensure MPAs’ sustainability
as bipartisan tools for conserving biodiversity.

6. Build on existing State MPA initiatives and encourage and
coordinate the development of MPA actions at the State
level. Opportunities exist for the states to lead in
implementing new highly and fully protected MPAs as well
as altering regulations in existing state managed MPAs. In
fact, these actions will be required to achieve the federal goals
of “Conserving and Restoring America the Beautiful 2021”.
State initiatives might include executive and legislative
actions, outreach and education, and coordination with the
federal government, local governments, Tribes, fishing
groups, conservation groups and other states. Several states
have introduced and/or passed resolutions relating to 30x30
planning (Nevada, Michigan, New York, South Carolina),
and others have implemented plans through executive
action (California) or other state government initiatives
(Hawaii, Maine).

7. Reinstate and empower the MPA Federal Advisory
Committee (MPA FAC). This committee can provide
expertise to help advise, review, and assess the U.S.’s
successful implementation of effective and equitable MPAs.
From 2003–2019, the MPA FAC advised NOAA and the
Department of the Interior on strengthening U.S. MPAs. It
was composed of members representing Tribal and state
governments, conservation, scientific researchers,
commercial and recreational fisheries, and offshore energy,
among others. However, the MPA FAC was terminated in
2019. If reinstated, this committee could play an important
role advising agencies across the Federal Government during
key upcoming decisions for achieving a ≥30% target and the
priorities outlined in the America the Beautiful Report,
providing a coordinating body representing diverse
stakeholders and rights holder groups.

8. Strengthen the NOAA MPA Center with long-term
funding to support U.S. MPA design, stewardship, and
effectiveness. Many of the priorities for improving U.S.
MPAs rely on a centralized source for updated data on U.S.
MPA protection and outcomes, and for working cross-sector
to align MPA programs not only with each other but with
other ocean sectors in a comprehensive marine spatial
planning framework. The National MPA Center within
NOAA’s Office of National Marine Sanctuaries is a
partnership between NOAA and the Department of the
Interior, tasked with improving U.S. MPAs, connecting
MPA programs, and communicating and building public
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support around MPAs. These efforts are capacity-limited,
particularly if the expectation is to scale up reporting, research,
communication, and other needs to effectively realize the goals of
the “Conserving and Restoring America the Beautiful” Report
(2021) and aU.S. 30x30 target. Improved resources such as long-
term funding would ensure that clear, consistent, and useful
information is available to inform these efforts.

9. Revisit and update the U.S. National Ocean Policy (NOP) and
OceanPolicyCommittee for an integrated,whole-government
approach to ocean planning and management. The NOP was
created in 2010 to enable amore cohesive, ecosystem-based, and
scientifically informed approach to ocean management and
policymaking, basedon reports and recommendations fromthe
Pew Oceans Commission (2003) and the U.S. Commission on
Ocean Policy (2004), and their merger into the Joint Ocean
Commission Initiative. The NOP represented an important
framework and mechanism for connecting national and
regional ocean management processes and enabling smart
ocean planning and efficient communication. However,
before action plans created under the NOP were
implemented, it was repealed in 2018. The need for a national
framework for ocean planning and management remains.
Updating a National Ocean Policy is a critical starting point.

The work presented here highlights opportunities to strengthen
and expand upon existing MPA protections to better safeguard
biodiversity and its benefits, as well as key recommendations for
achieving this vision.Although the context presentedhere is specific
to theU.S., the themeshighlight a global challenge, but one inwhich
the U.S. is well-equipped to play an important leadership role by
finding and scaling effective and equitable solutions. Rather than
focusing on a single numerical target, we encourage scientists and
policymakers to more holistically focus on developing an effective,
representative, and equitable system of protection that will help the
U.S.meet its stated goals to stem the biodiversity and climate crises.
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