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Purpose: We assessed the associations between population-based
polygenic risk scores (PRS) for breast (BC) or epithelial ovarian
cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic
variant carriers.

Methods: Retrospective cohort data on 18,935 BRCA1 and 12,339
BRCA2 female pathogenic variant carriers of European ancestry
were available. Three versions of a 313 single-nucleotide poly-
morphism (SNP) BC PRS were evaluated based on whether they
predict overall, estrogen receptor (ER)–negative, or ER-positive BC,
and two PRS for overall or high-grade serous EOC. Associations
were validated in a prospective cohort.

Results: The ER-negative PRS showed the strongest association
with BC risk for BRCA1 carriers (hazard ratio [HR] per standard
deviation= 1.29 [95% CI 1.25–1.33], P= 3×10−72). For BRCA2, the
strongest association was with overall BC PRS (HR= 1.31 [95% CI
1.27–1.36], P= 7×10−50). HR estimates decreased significantly with

age and there was evidence for differences in associations by
predicted variant effects on protein expression. The HR estimates
were smaller than general population estimates. The high-grade
serous PRS yielded the strongest associations with EOC risk for
BRCA1 (HR= 1.32 [95% CI 1.25–1.40], P= 3×10−22) and BRCA2
(HR= 1.44 [95% CI 1.30–1.60], P= 4×10−12) carriers. The
associations in the prospective cohort were similar.

Conclusion: Population-based PRS are strongly associated with
BC and EOC risks for BRCA1/2 carriers and predict substantial
absolute risk differences for women at PRS distribution extremes.

Genetics inMedicine (2020) 22:1653–1666; https://doi.org/10.1038/s41436-
020-0862-x
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INTRODUCTION
Pathogenic variants in BRCA1 and BRCA2 are associated with
high risk of developing breast and ovarian cancers.1,2 A recent
study of BRCA1/2 carriers estimated the average risk of
developing breast cancer by age 80 years to be 72% for BRCA1
and 69% for BRCA2 carriers.2 Corresponding ovarian cancer
risks were 44% for BRCA1 and 17% for BRCA2 carriers. This
and previous studies have demonstrated that cancer risks for
BRCA1/2 carriers increase with an increasing number of
affected first- or second-degree relatives,2 suggesting genetic
or other familial factors modify cancer risks for BRCA1/2
carriers. Consistent with this observation, common breast and
ovarian cancer susceptibility single-nucleotide polymorph-
isms (SNPs), identified through genome-wide association
studies (GWAS) in the general population, have been shown
to modify breast and ovarian cancer risks for BRCA1/2
carriers.3–7

Polygenic risk scores (PRS) based on the combined effects
of disease-associated SNPs, can lead to significant levels
of breast and ovarian cancer risk stratification in the
general population.8,9 It has also been demonstrated that
PRS can result in large absolute risk differences of developing
these cancers for BRCA1/2 carriers.10 The largest study to date
was a retrospective cohort study of 23,463 carriers using a

PRS based on up to 88 breast cancer susceptibility SNPs
and a PRS based on up to 17 ovarian cancer susceptibility
SNPs.10

Recent population-based GWAS identified an additional 72
breast and 12 ovarian cancer susceptibility SNPs.6,7,11 Based
on these data, PRS have been constructed that include SNPs
associated at both genome-wide and sub-genome-wide
significance levels. The best performing PRS for breast cancer
includes 313 SNPs.12

It is therefore important to understand how the most
recently developed breast and ovarian cancer PRS modify
cancer risks for BRCA1/2 carriers, as this information
will be necessary for implementation studies to evaluate
how their application influences cancer risk management for
women with pathogenic variants in these genes. In this
study, we used the largest sample of women with pathogenic
BRCA1/2 variants currently available to assess the
associations between the most recently developed PRS with
cancer risks for BRCA1/2 carriers. We evaluated how these
PRS associations vary with age, cancer family history, and
BRCA1/2 gene variant characteristics. We further validated
the associations for the first time in a prospective cohort
of carriers and investigated implications for cancer risk
prediction.
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MATERIALS AND METHODS
Retrospective cohort study participants
Study participants were enrolled through 63 studies from 29
countries contributing to the Consortium of Investigators of
Modifiers of BRCA1/2 (CIMBA).13 Eligibility was restricted to
women who were ≥18 years old at recruitment and carried a
pathogenic BRCA1/2 variant. CIMBA collected information on
year of birth, variant description, age at study recruitment and
last follow-up, age at breast and ovarian cancer (including
invasive ovarian, fallopian tube, or peritoneal) diagnosis, age/
date at bilateral prophylactic mastectomy, and number of first-
and second-degree relatives with breast or ovarian cancer.
Related individuals were tracked through a unique family
identifier. The majority of study participants were recruited
through cancer genetics clinics and enrolled in regional or
national research studies. Variants were categorized according
to their predicted or known effect on cellular protein expression:
class I included loss-of-function pathogenic variants expected to
result in unstable or no protein; class II included variants likely
to yield stable mutant proteins.14 Breast cancer pathology data
were available from pathology reviews, tumor registry records,
medical records or pathology records, and from tissue
microarray immunohistochemical staining.15

The genotyping, quality control and imputation processes
have been described in detail previously6,7 (brief description
provided in supplement). The present study was restricted to
carriers of BRCA1/2 pathogenic variants of European ancestry,
determined using genetic data and multidimensional scaling.6,7

Breast cancer PRS
The methods for calculating the PRS are described in the
Supplementary material. We evaluated three versions of the
published breast cancer PRS based on the same 313 SNPs,
with different weights optimized to predict the risk of overall
(PRSBC), ER-negative (PRSER-), or ER-positive (PRSER+)
breast cancer12 (Table S1).
The breast cancer PRS were standardized using the standard

deviations (SDs) of the corresponding PRS in population-
based controls. Therefore, the estimated hazard ratios (HRs)
from this study are directly comparable with odds ratios
(ORs) estimated from population-based data.12

Epithelial ovarian cancer PRS
We constructed ovarian cancer PRS based on ovarian cancer
susceptibility SNPs identified through GWAS.7 Two ovarian
cancer PRS were constructed: one for all invasive epithelial
ovarian cancer (EOC) using 30 SNPs (PRSEOC); and one for
predicting high-grade serous (HGS) EOC using 22 SNPs
(PRSHGS) (Supplementary material, Table S2). HGS is the
predominant EOC histotype in BRCA1/2 tumors.16

The PRS SDs in unaffected women in our sample were used
to standardize PRSEOC and PRSHGS.

Associations between PRS and breast cancer risk
Associations between PRS and breast cancer risk for BRCA1/2
carriers were assessed using the CIMBA retrospective cohort.

Study participants were censored at the first of (1) breast
cancer diagnosis, (2) ovarian cancer diagnosis, (3) risk-
reducing bilateral mastectomy, (4) last follow-up, or (5) age
80 years. Participants with a first breast cancer diagnosis were
considered affected. To account for nonrandom sampling
with respect to disease status, associations were evaluated
using weighted Cox regression.17,18 This involved assigning
age- and disease-specific sampling weights, such that observed
weighted age-specific incidences agreed with established
incidences for BRCA1/2 pathogenic variant carriers (Supple-
mentary material).19

We assessed the associations between three breast cancer
PRS with the risk of overall breast cancer, and separately with
ER-positive or ER-negative breast cancer risk. Models were
stratified by country and Ashkenazi Jewish ancestry and were
adjusted for birth cohort and the first four ancestry
informative principal components calculated separately by
genotyping array (Supplementary material). We fitted models
adjusting for family history of breast cancer in first- and
second-degree relatives to determine whether cancer family
history was a confounder of PRS associations. Family history
was coded as no family history, or one relative, or two or
more relatives diagnosed with breast cancer. Robust variances
were calculated to account for the inclusion of related
individuals by clustering on family membership. All models
were fitted separately in BRCA1 and BRCA2 carriers.
We fitted separate models in which the PRS was assumed to

be (1) continuous and (2) categorical based on PRS
percentiles determined by the PRS distribution in unaffected
carriers. We tested for variation in the association of the PRS
by age by fitting Cox regression models in which the PRS was
a time-varying covariate, with age as the time scale, that
included a PRS main effect and a PRS-by-age interaction
term. Heterogeneity in the associations across countries was
assessed by fitting models with a PRS–country interaction
term. A likelihood ratio test (LRT) was used to assess
statistical significance of interaction terms by comparing the
models with the interaction against a model without the
interaction term (Supplementary material). Similarly, LRTs
were used to compare the fit of nested models.
Previous studies have demonstrated that cancer risks for

BRCA1/2 carriers vary by pathogenic variant location or
functional effect.2,20 To investigate whether the PRS associa-
tions varied by BRCA1/2-variant location, we fitted models
that included a PRS by location interaction. Variants were
grouped into regions by nucleotide position on the basis of
previously reported differences in breast or ovarian cancer
risks. BRCA1 variants were grouped in three regions (5’ to
c.2281, c.2282 to c.4071, and c.4072 to 3’).20,21 The BRCA2
ovarian cancer cluster region (OCCR) was used to define the
variant location groups.20,22 Two BRCA2 OCCR definitions
were used: “narrow” (5’ to c.3846, c.3847 to c.6275, c.6276 to
3’) and “wide” (5’ to c.2831, c.2832 to c.6401, c.6402 to 3’). We
also investigated variation in PRS associations by the
predicted variant effect on protein stability/expression (class
I versus class II, defined above).
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To assess the associations with ER-specific breast cancer
risk, a similar censoring process was used except the event of
interest was diagnosis of either ER-positive or ER-negative
breast cancer. Affected carriers with the alternative ER status
to the outcome of interest were censored at that diagnosis.
Carriers with missing ER status were excluded from the
analysis.

Associations with epithelial ovarian cancer risk
The associations with EOC risk were evaluated following a
similar process. However, women were censored at bilateral
risk-reducing salpingo-oophorectomy (RRSO) rather than
bilateral mastectomy. Carriers with a first ovarian cancer
diagnosis were assumed to be affected in this analysis. We also
fitted models that adjusted for family history of ovarian
cancer in first- and second-degree relatives, coded as no
family history, or one relative, or two or more relatives
diagnosed with the disease.
The discriminatory ability of each PRS was assessed by

Harrell’s C-statistic23 stratified by country and Ashkenazi
Jewish ancestry and adjusted for birth cohort and principal
components.24 Standard errors were estimated using 1000
bootstrap replications.

Validation in prospective cohorts
The PRS associations were further evaluated using prospective
cohort data. The prospective cohort included pathogenic
variant carriers from the BRCA1 and BRCA2 Cohort
Consortium (BBCC)2 and CIMBA13 who were unaffected at
recruitment (informed consent and baseline questionnaire).
The BBCC included data from the International BRCA1/2
Carrier Cohort Study (IBCCS), Breast Cancer Family Registry
(BCFR), and the Kathleen Cunningham Foundation Con-
sortium for Research into Familial Breast Cancer (kConFab)
(details in Supplementary material).2 Only women of
European ancestry were included in the analysis. All
prospective cohort participants were genotyped as part of
the CIMBA effort described above. However, prospective
analyses considered only the prospective follow-up period
from the time at recruitment of each participant into the
study. Thus, the analysis time considered in the prospective
and retrospective analyses were completely distinct. Associa-
tions were evaluated using Cox regression, separately for
BRCA1 and BRCA2 carriers. The censoring process and
analysis are described in detail in the Supplementary material.

Predicted age-specific cancer risks by PRS
Retrospective analysis HR estimates were used to predict age-
specific absolute risks of developing breast and ovarian cancer
by PRS percentiles following a previously published method.25

To ensure consistency with known cancer risks for BRCA1/2
carriers, average age-specific cancer incidences were constrained
over PRS percentile categories to agree with external estimates
of cancer incidences for carriers2 (Supplementary material). We
also calculated absolute breast cancer risks for carriers in the
absence or presence of cancer family history and by BRCA2

variant location, assuming external average cancer incidences by
family history and variant location.2 The absolute risks were
used to calculate 10-year cancer risks at each age by different
PRS percentiles (Supplementary material).

Ethics statement
All study participants provided written informed consent and
participated in research or clinical studies at the host institute
under ethically approved protocols. The studies and their
approving institutes are listed as a separate online Supple-
ment (Ethics Statement).
All statistical tests were two-sided. Retrospective and

prospective cohort analyses were performed using R 3.5.1.
Age-varying PRS and discrimination analyses were conducted
using Stata 13.1 (Supplementary material).

RESULTS
The CIMBA retrospective cohort consisted of 18,935 BRCA1
carriers (9473 diagnosed with breast and 2068 with ovarian
cancer) and 12,339 BRCA2 carriers (6332 with breast and 718
with ovarian cancer, Table S3).
The SNPs included in the PRS were well imputed on both

genotyping platforms (Supplementary material, Figs. S1, S2,
Tables S1, S2). The average PRS were larger for women
diagnosed with cancer, compared with unaffected carriers
(Table S3), but the PRS SDs were similar in unaffected and
affected carriers (Table S3).

Associations with breast cancer risk
Table 1 shows the associations between PRSBC, PRSER-, and
PRSER+ and overall breast cancer risk for carriers using the
CIMBA retrospective cohort data. PRSER- yielded the
strongest association for BRCA1 carriers (per SD HR= 1.29,
95% CI= 1.25–1.33, P= 3×10−72). For BRCA2 carriers, the
strongest associations were found for PRSBC (per SD HR=
1.31, 95% CI= 1.27–1.36, P= 7×10−50) and PRSER+ (per SD
HR= 1.31, 95% CI= 1.26–1.36, P= 6×10−49). Adjusting for
breast cancer family history yielded similar associations
between the PRS and breast cancer risk to those observed in
the unadjusted models (Table 1). Family history was
significantly associated with risk in all models.
The PRSER- and PRSBC were used for subsequent BRCA1

and BRCA2 carrier analyses, respectively. There was no
statistically significant evidence of heterogeneity in the
country-specific HR estimates (BRCA1 PLRT= 0.26, BRCA2
PLRT= 0.64; Fig. S3). The estimated HRs for each PRS
percentile category (Table 2) were consistent with the HRs
predicted under models with the continuous PRS (estimated
above), but were attenuated compared to the HRs expected
under the population-based PRS distributions (Fig. 1a, b).
Models estimating PRS percentile-specific associations did not
fit significantly better than models in which PRS were
continuous (BRCA1 carriers PLRT= 0.18; BRCA2 carriers
PLRT= 0.99). The HRs for the breast cancer association
decreased with age (Table 2; PRS-by-age interaction
HRs: BRCA1 HR= 0.996, P= 0.003; BRCA2 HR= 0.994,
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P= 9.40×10−5). The HRs for the PRS associations with breast
cancer risk did not differ by variant location (Table 2: BRCA1
PLRT= 0.17; BRCA2 PLRT ≥ 0.27). However, the associations
differed by the predicted effect of the gene variant on protein
stability/expression: the HRs for the PRS associations with
breast cancer risk were larger for carriers with class II (stable
mutant proteins) versus class I (unstable/no protein) variants
(Table 2, BRCA1: class I HR= 1.26 [95% CI= 1.22–1.30],
class II HR= 1.38 [1.30–1.46], Pdifference= 0.011; BRCA2:
class I HR= 1.30 [95% CI= 1.25–1.35], class II HR= 1.72
[95% CI= 1.44–2.06], Pdifference= 0.003).
Under the age-varying PRS models, the C-statistic for

PRSER- was 0.60 (95% CI= 0.59–0.61) for BRCA1 carriers,
and for the PRSBC for BRCA2 carriers 0.65 (95% CI=
0.63–0.67). Under models that did not include the age-varying
PRS, the estimated C-statistics were 0.58 (95% CI=
0.57–0.59) and 0.60 (95% CI= 0.59–0.62) for BRCA1 and
BRCA2 carriers, respectively.

Associations with ER-specific breast cancer risk
The strongest PRS associations with ER-negative disease were
observed for PRSER- for both BRCA1 (per SD HR= 1.23, 95%
CI= 1.18–1.28, P= 2×10−27) and BRCA2 (HR= 1.31, 95%
CI= 1.21–1.43, P= 1×10−10) carriers (Table 1). The PRSBC
and PRSER+ showed the strongest associations with ER-
positive disease for BRCA1 and BRCA2 carriers with similar
HR estimates for PRSBC and PRSER+ (Table 1). The
associations remained similar after adjusting for family
history of breast cancer (Table 1).

Associations with epithelial ovarian cancer risk
The 30-SNP PRSEOC was strongly associated with EOC
risk for BRCA1 (per SD HR= 1.31, 95% CI= 1.24–1.39,

P= 1×10−21) and BRCA2 (per SD HR= 1.43, 95% CI=
1.29–1.59, P= 2×10−11) carriers (Table 1). The 22-SNP
PRSHGS, based only on SNPs showing associations with
high-grade serous EOC, showed similar associations (Table 1,
BRCA1 HR= 1.32, 95% CI= 1.25–1.40, P= 3×10−22; BRCA2
HR= 1.44, 95% CI= 1.30–1.60, P= 4×10−12). Adjusting for
family history of ovarian cancer yielded similar associations to
unadjusted models (Table 1).
PRSHGS was used for downstream analyses for BRCA1 and

BRCA2 carriers. There was no evidence of heterogeneity in the
PRSHGS associations across countries (Fig. S3: BRCA1 PLRT=
0.08; BRCA2 PLRT= 0.97). For both BRCA1 and BRCA2 carriers
the estimated HRs by PRS percentile categories (Table 2) were
consistent with those expected under the theoretical population-
based PRS distributions (Fig. 1c, d). There was no evidence that
the PRSHGS association with EOC risk varied by age (BRCA1
P= 0.35; BRCA2 P= 0.14). The associations between PRSHGS
and EOC risk varied by BRCA1 variant location (PLRT=
8.7×10−3), with a larger HR for variants in the central region of
BRCA1 (central region HR= 1.50, 95% CI= 1.35–1.66; 5’ to
c.2281 region HR= 1.30, 95% CI= 1.18–1.42; c.4072 to 3’
region HR= 1.21, 95% CI= 1.10–1.33). There was little
evidence to support differences in the associations by BRCA2
variant location (Table 2). There was no evidence of differences
in the associations by the BRCA1 variant predicted effect on
protein expression (Pdifference= 0.85).
The C-statistics for PRSHGS were estimated to be 0.604 (95%

CI= 0.582–0.626) for BRCA1 and 0.667 (95% CI=
0.636–0.699) for BRCA2 carriers.

Prospective cohort associations
The breast cancer prospective cohort included 2088 BRCA1
carriers with 297 incident cases and 1757 BRCA2 carriers

Table 1 PRS associations with breast and ovarian cancer risks for BRCA1 and BRCA2 pathogenic variant carriers using the
CIMBA retrospective cohort data.

BRCA1 carriers BRCA2 carriers
No FHa adjustment FH adjusted No FH adjustment FH adjusted

Outcome PRS Unaffected/
affected

HR (95% CI) P HR (95% CI) P Unaffected/
affected

HR (95% CI) P HR (95% CI) P

Breast cancer BC 9462/ 9473 1.20
(1.17–1.23)

1.15×10−39 1.20
(1.17–1.23)

9.54×10−40 6007/ 6332 1.31
(1.27–1.36)

7.11×10−50 1.31
(1.26–1.36)

6.54×10−48

ER- 1.29
(1.25–1.33)

3.03×10−72 1.29
(1.25–1.33)

1.02×10−71 1.23
(1.19–1.28)

4.06×10−29 1.23
(1.18–1.27)

6.72×10−28

ER+ 1.17
(1.14–1.20)

6.93×10−29 1.17
(1.14–1.20)

5.50×10−29 1.31
(1.26–1.36)

6.12×10−49 1.30
(1.26–1.35)

5.10×10−47

ER-negative
breast cancer

BC 10,138/ 3263 1.09
(1.05–1.13)

3.69×10−6 1.09
(1.05–1.13)

4.44×10−6 8049/ 703 1.20
(1.11–1.30)

4.90×10−6 1.19
(1.10–1.29)

1.91×10−5

ER- 1.23
(1.18–1.28)

2.39×10−27 1.23
(1.18–1.27)

1.08×10−26 1.31
(1.21–1.43)

1.15×10−10 1.29
(1.19–1.41)

9.98×10−10

ER+ 1.06
(1.02–1.10)

4.58×10−3 1.06
(1.02–1.10)

4.93×10−3 1.17
(1.08–1.26)

1.36×10−4 1.15
(1.07–1.25)

3.91×10−4

ER-positive
breast cancer

BC 12,376/ 1025 1.44
(1.35–1.53)

3.88×10−28 1.44
(1.35–1.54)

1.25×10−27 6440/ 2312 1.37
(1.31–1.44)

2.95×10−40 1.36
(1.30–1.43)

6.28×10−38

ER- 1.29
(1.21–1.38)

2.94×10−15 1.29
(1.21–1.37)

9.25×10−15 1.22
(1.16–1.28)

1.93×10−15 1.21
(1.15–1.27)

1.54×10−14

ER+ 1.44
(1.35–1.54)

3.94×10−28 1.45
(1.35–1.54)

1.12×10−27 1.38
(1.32–1.45)

1.88×10−42 1.37
(1.31–1.44)

5.99×10−40

Ovarian cancer EOC 16,867/ 2068 1.31
(1.24–1.39)

1.49×10−21 1.31
(1.24–1.39)

2.36×10−21 11,621/ 718 1.43
(1.29–1.59)

1.81×10−11 1.42
(1.28–1.58)

3.40×10−11

HGS 1.32
(1.25–1.40)

3.01×10−22 1.32
(1.25–1.40)

5.18×10−22 1.44
(1.30–1.60)

4.34×10−12 1.43
(1.29–1.59)

7.54×10−12

BC breast cancer, CI confidence interval, CIMBA Consortium of Investigators of Modifiers of BRCA1/2, ER- estrogen receptor negative, ER+ estrogen receptor positive,
EOC epithelial ovarian cancer, FH family history, HGS high-grade serous, HR hazard ratio, PRSpolygenic risk score.
Rows in bold represent the best performing PRS for each particular outcome.
aFamily history in first- and second-degree relatives: coded as no family history, or one relative, or two or more relatives diagnosed with the disease.
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with 215 incident cases (Table S4). The PRSER- was
associated with breast cancer risk for BRCA1 carriers (per
SD HR= 1.28, 95% CI= 1.14–1.44, P= 4.4×10−5). For
BRCA2 carriers, PRSBC was associated with breast cancer
risk with a per SD HR= 1.36 (95% CI= 1.17–1.57, P=
4.3×10−5) (Table 3).

The ovarian cancer prospective cohort comprised 3152
BRCA1 carriers with 108 incident cases and 2495 BRCA2
carriers with 56 incident cases (Table S4). The PRSHGS was
associated with EOC risk for both BRCA1 (HR= 1.28, 95%
CI= 1.06–1.55, P= 0.011) and BRCA2 (HR= 1.45, 95%
CI= 1.13–1.86, P= 0.003) carriers (Table 3).
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Fig. 1 Associations with specific polygenic risk score (PRS) percentiles. The PRS percentile thresholds were determined in the sets of unaffected
carriers for the disease under assessment. Table 2 shows the estimated hazard ratios (HRs). The black curve represents the expected HRs assuming the per
standard deviation HR estimates in BRCA1 and BRCA2 carriers based on the continuous PRS models (Table 1). (a) PRSER- percentile-specific associations with
breast cancer risk for BRCA1 carriers. The red curve represents the expected HRs over the PRS percentile distribution, assuming the per SD odds ratio (OR)
estimate from the population-based validation studies from Mavaddat et al.12 (OR= 1.45 per PRSER- standard deviation). (b) PRSBC percentile-specific
associations with breast cancer risk for BRCA2 carriers. The red curve represents the expected HRs over the PRS percentile distribution, assuming the per SD
OR estimate from the population-based validation studies from Mavaddat et al.12 (OR= 1.61 per PRSBC standard deviation). (c) PRSHGS percentile-specific
associations with ovarian cancer risk for BRCA1 carriers. (d) PRSHGS percentile-specific associations with ovarian cancer risk for BRCA2 carriers. The gray curve
(c and d only) represents the theoretical HRs across the PRS distribution, calculated by assuming external single-nucleotide polymorphism (SNP) effect sizes
and allele frequencies for SNPs contributing to the PRS. CI confidence interval, ER estrogen receptor, HGS high-grade serous.
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Absolute risks of cancer by PRS percentiles
We estimated age-specific and 10-year absolute risks of
developing breast and ovarian cancers across different PRS
percentiles (Figs. 2 and S4). BRCA1 carriers at the 5th and
95th percentiles of the PRSER- distribution were predicted to
have breast cancer risks to age 80 years of 59% and 83%,
respectively. The corresponding risks for BRCA2 carriers
based on PRSBC were 57% and 81%. Although PRS
associations were not altered by family history adjustment
in the models, and there was no significant evidence of
interaction between PRS and variant location, both of these
factors remain significant predictors of breast cancer risk (in
addition to PRS). Therefore, family history and variant
location can be considered jointly with the PRS to predict
cancer risks for BRCA1/2 carriers (Figs. S5–S9). For example,
breast cancer risk to age 80 years for BRCA2 carriers with no
family history at the 5th and 95th percentiles of the PRS were
predicted to be 43% and 67%, respectively, compared with
62% and 85% for those with a family history. The risks of
developing ovarian cancer by age 80 years were 30% and 59%
for BRCA1 carriers at the 5th and 95th percentiles of the
PRSHGS distribution. The corresponding risks for BRCA2
carriers were 10% and 28%, respectively.

DISCUSSION
We investigated the associations between a recently reported
PRS for breast cancer, based on 313 SNPs, and a PRS for
EOC, based on 30 SNPs, with cancer risks for BRCA1 and
BRCA2 carriers. The associations were evaluated in a large
retrospective cohort and separately in a prospective cohort of
BRCA1/2 carriers.
The results demonstrate that the PRS developed using

population-based data are also associated with breast and
ovarian cancer risk for women with BRCA1/2 pathogenic
variants. The PRS developed for predicting ER-negative breast
cancer showed the strongest association with breast cancer
risk for BRCA1 carriers, while for BRCA2 carriers the PRS
developed for predicting overall breast cancer risk performed
best. The associations were unchanged after adjusting for
cancer family history and were similar between the retro-
spective and prospective studies. There was evidence that the
magnitude of the PRS associations decreased with increasing
age for BRCA1 and BRCA2 carriers. There was evidence for
differences in associations by the predicted effects of variants
on protein stability/expression, with the breast cancer PRS

having a larger effect for carriers of variants predicted to yield
a stable protein. For ovarian cancer, the PRS developed for
predicting overall or HGS EOC demonstrated similar
evidence of association with EOC risk, for both BRCA1 and
BRCA2 carriers. The results are consistent with findings from
a previous CIMBA study, based on fewer samples and fewer
SNPs, which demonstrated that PRS can lead to large
differences in absolute risks of developing breast and ovarian
cancers for female BRCA1/2 carriers.10

The estimated HR associations for the PRS with breast
cancer risk from this study were smaller than the estimated
ORs from the population-based study in which they were
derived.12 This difference is unlikely to be an overestimation
of the ORs in the general population (“winner’s curse”26),
because the effect sizes were estimated in prospective studies
that were independent of the data used in their develop-
ment.12,27 Adjustment for family history, a potential con-
founder in this study, did not influence the associations.
Therefore, these most likely represent real differences, in
which PRS modify breast cancer risk for BRCA1/2 carriers to
a smaller relative extent than the general population. This
meaningful attenuation must be considered when using
population-based PRS to predict breast cancer risk for
BRCA1/2 carriers and should be incorporated into breast
cancer risk prediction models.28

The departure from the multiplicative model for the joint
effects of PRS (or some subset of SNPs) and BRCA1/2
pathogenic variants might simply reflect the high absolute
risks for BRCA1/2 carriers. That is, women with the highest
polygenic risk are likely to develop breast cancer at a young
age, so that the relative risk associated with the PRS will
diminish with age. It is interesting that the decreasing age
effect appeared stronger for carriers than the general
population, while the relative risk below age 50 years was
more comparable with that seen in the general population.12

We found that the breast cancer HRs were significantly
elevated for carriers of variants that are predicted to generate
a stable mutant protein (class II variants). These elevated HRs
were similar to the corresponding ORs for association
between the PRS and ER-negative (OR= 1.47) and ER-
positive (OR= 1.74) breast cancer reported in the general
population.12 The vast majority of individuals in the general
population would be expected to be noncarriers with intact
BRCA1/2 protein expression in at-risk tissues, so this
observation suggests that some SNPs in the PRS may exert

Table 3 Associations of the best performing PRS in the prospective cohort of BRCA1 and BRCA2 carriers.

Outcome PRS Number of women at risk Incident cancers HR (95% CI) P

Breast cancer BRCA1 carriers ER- 2088 297 1.28 (1.14–1.44) 4.44×10−5

BRCA2 carriers BC 1757 215 1.36 (1.17–1.57) 4.26×10−5

Ovarian cancer BRCA1 carriers HGS 3152 108 1.28 (1.06–1.55) 1.08×10−2

BRCA2 carriers HGS 2495 56 1.45 (1.13–1.86) 3.29×10−3

Number of women at risk is the number of pathogenic variant carriers unaffected at baseline. Incident cancers is the number of women who developed breast/ovarian
cancer during the follow-up period.
BC breast cancer, CI confidence interval, ER- estrogen receptor negative, HGS high-grade serous, HR hazard ratio, PRS polygenic risk score.
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their effect on proteins that interact with stable wildtype or
mutant BRCA1 or BRCA2 protein.
We used the ER-specific PRS to assess associations with ER-

positive and ER-negative breast cancer for BRCA1/2 carriers.
As expected, the PRS developed for ER-positive breast cancer
in the general population was the most predictive of ER-
positive breast cancer risk for both BRCA1 and BRCA2
carriers, and the PRS developed for ER-negative breast cancer
was the most predictive of ER-negative breast cancer for both
BRCA1 and BRCA2 carriers, in line with known differences in
ER expression between BRCA1- and BRCA2-related

tumors.29,30 These results suggest that further risk prediction
improvements can be achieved by estimating the risk of
developing ER-specific breast cancer for BRCA1/2 carriers.
Unlike the breast cancer PRS, no systematic evaluation of

EOC PRS has been reported in the general population. We
therefore included only SNPs identified through GWAS for
EOC and its histotypes, using the reported effect sizes as PRS
weights. We found that a PRS constructed on the basis of the
associations between SNPs and HGS EOC was the most
predictive for both BRCA1 and BRCA2 carriers, in line with
the fact that the majority of tumors in both BRCA1 and
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the retrospective cohort hazard ratio (HR) estimates (Tables 1, 2). (a) Predicted absolute risks of developing breast cancer for BRCA1 carriers by percentiles of
the PRSER-. (b) Predicted absolute risks of developing breast cancer for BRCA2 carriers by percentiles of the PRSBC. (c) Predicted absolute risks of developing
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BRCA2 carriers are HGS.15 The estimated HR for PRSHGS was
larger for BRCA2 carriers compared with the BRCA1 carrier
HR estimate. This pattern had been observed previously,
based on a smaller sample size and fewer SNPs, but the
difference between the HRs observed here is smaller than that
reported previously.10

Predicted absolute risks for BRCA1 carriers at the 5th and
95th PRS percentiles at age 50 years varied from 31% to 58%
for breast, and from 5% to 13% for ovarian cancer. By age 80
years, they varied from 59% to 83% for breast and from 30%
to 59% for ovarian cancer. The corresponding absolute risks
for BRCA2 carriers by age 50 years ranged from 23% to 49%
and by age 80 years from 57% to 81% for breast cancer. The
ovarian cancer risks by age 80 years varied from 10% to 28%.
We also observed differences in the 10-year age-specific risks
of cancer for different PRS distribution percentiles (Fig. S4).
For example, the estimated 10-year risk of developing breast
cancer at age 40 years was 17% and 34% for BRCA1 carriers at
the 5th and 95th percentiles of the PRS for ER-negative breast
cancer, respectively. We found no significant attenuation of
the PRS associations when adjusting for family history, and
no evidence of interaction between PRS and pathogenic
variant location. However, family history and variant location
are both associated with cancer risk for BRCA1/2 carriers.2,20–
22 Taken together, the results suggest that when family history
and PRS are considered jointly, or when variant location and
PRS are considered jointly, both factors influence the risk of
developing breast cancer for BRCA1/2 carriers. As a
consequence, the differences in absolute risk become larger
when the PRS is considered together with family history or
variant location (Figs. S5–S9) and demonstrate that the PRS
should be considered in combination with other risk factors to
provide comprehensive cancer risks for BRCA1/2 carriers.
Strengths of this study include the large cohort sample sizes

of BRCA1/2 carriers and use of independent prospective
cohort data to validate PRS associations with cancer risks. The
similarity in association estimates between the retrospective
and prospective analyses suggests that retrospective estimates
have not been strongly influenced by potential biases (e.g.,
survival bias). As the PRS analyzed in this study were
originally developed and validated in population-based
studies, the associations reported here represent independent
evaluations of the PRS in BRCA1/2 carriers. The analyses were
also adjusted for cancer family history, hence associations are
unlikely to be biased due to confounding.
Limitations of this study include the fact that tumor ER

status information was missing on a substantial proportion of
the study population. Therefore, we were unable to assess
associations with ER-specific breast cancer in the entire
sample of BRCA1/2 carriers. The use of PRS developed in the
general population means that if there are BRCA1- or BRCA2-
specific modifier SNPs,4,5 these may not have been included
in the PRS. Therefore, alternative approaches should also
investigate developing PRS using data directly from BRCA1
and BRCA2 carriers, although much larger sample sizes will
be required. We did not present confidence intervals for the

predicted PRS-specific absolute risks of breast or ovarian
cancer, and the absolute PRS-specific risks by variant location
and family history. These predictions critically depend on
external cancer incidence estimates for BRCA1/2 pathogenic
variant carriers,2 which themselves are uncertain and there-
fore should only be used as a general guide. Future studies
should aim to factor in uncertainty in the predicted risks
based on all parameters. In addition, the PRS-specific absolute
cancer risks overall and by family history or pathogenic
variant location should be validated in much larger prospec-
tive studies of unaffected carriers. Finally, the present analyses
were limited to carriers of European ancestry. Hence the
results presented may not be applicable to BRCA1/2 carriers
of Asian, African, and other non-European ancestries.
PRS are now being used in risk-stratified screening trials

and other implementation studies in the general population.31

They are commercially available and have been incorporated
in comprehensive cancer risk prediction models.28,32 The
findings of this study indicate that these PRS, in combination
with established risk modifiers (e.g. family history and
pathogenic variant characteristics) can be used to provide
more personalized cancer risk predictions for carriers, which
may assist clinical management decisions. It is therefore
important to undertake relevant implementation studies to
determine the optimal way of incorporating these PRS into
genetic counseling and risk management, and to assess
whether PRS on their own or in combination with other risk
factors influence the short- or long-term clinical management
decisions that female BRCA1/2 carriers make. Furthermore,
the available risk models incorporating the effects of BRCA1/2
pathogenic variants28,32 and PRS should be validated in large
prospective studies of carriers.
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