105 research outputs found

    ResBoost: characterizing and predicting catalytic residues in enzymes

    Get PDF
    Abstract Background Identifying the catalytic residues in enzymes can aid in understanding the molecular basis of an enzyme's function and has significant implications for designing new drugs, identifying genetic disorders, and engineering proteins with novel functions. Since experimentally determining catalytic sites is expensive, better computational methods for identifying catalytic residues are needed. Results We propose ResBoost, a new computational method to learn characteristics of catalytic residues. The method effectively selects and combines rules of thumb into a simple, easily interpretable logical expression that can be used for prediction. We formally define the rules of thumb that are often used to narrow the list of candidate residues, including residue evolutionary conservation, 3D clustering, solvent accessibility, and hydrophilicity. ResBoost builds on two methods from machine learning, the AdaBoost algorithm and Alternating Decision Trees, and provides precise control over the inherent trade-off between sensitivity and specificity. We evaluated ResBoost using cross-validation on a dataset of 100 enzymes from the hand-curated Catalytic Site Atlas (CSA). Conclusion ResBoost achieved 85% sensitivity for a 9.8% false positive rate and 73% sensitivity for a 5.7% false positive rate. ResBoost reduces the number of false positives by up to 56% compared to the use of evolutionary conservation scoring alone. We also illustrate the ability of ResBoost to identify recently validated catalytic residues not listed in the CSA

    Immunomodulatory strategies prevent the development of autoimmune emphysema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of anti-endothelial cell antibodies and pathogenic T cells may reflect an autoimmune component in the pathogenesis of emphysema. Whether immune modulatory strategies can protect against the development of emphysema is not known.</p> <p>Methods</p> <p>Sprague Dawley rats were immunized with human umbilical vein endothelial cells (HUVEC) to induce autoimmune emphysema and treated with intrathymic HUVEC-injection and pristane. Measurements of alveolar airspace enlargement, cytokine levels, immuno histochemical, western blot analysis, and T cell repertoire of the lung tissue were performed.</p> <p>Results</p> <p>The immunomodulatory strategies protected lungs against cell death as demonstrated by reduced numbers of TUNEL and active caspase-3 positive cells and reduced levels of active caspase-3, when compared with lungs from HUVEC-immunized rats. Immunomodulatory strategies also suppressed anti-endothelial antibody production and preserved CNTF, IL-1alpha and VEGF levels. The immune deviation effects of the intrathymic HUVEC-injection were associated with an expansion of CD4+CD25+Foxp3+ regulatory T cells. Pristane treatment decreased the proportion of T cells expressing receptor beta-chain, Vβ16.1 in the lung tissue.</p> <p>Conclusions</p> <p>Our data demonstrate that interventions classically employed to induce central T cell tolerance (thymic inoculation of antigen) or to activate innate immune responses (pristane treatment) can prevent the development of autoimmune emphysema.</p

    Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles

    Get PDF
    <div><p>Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in <i>Trypanosoma brucei</i>. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.</p></div

    Why Pleiotropic Interventions are Needed for Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) involves a complex pathological cascade thought to be initially triggered by the accumulation of β-amyloid (Aβ) peptide aggregates or aberrant amyloid precursor protein (APP) processing. Much is known of the factors initiating the disease process decades prior to the onset of cognitive deficits, but an unclear understanding of events immediately preceding and precipitating cognitive decline is a major factor limiting the rapid development of adequate prevention and treatment strategies. Multiple pathways are known to contribute to cognitive deficits by disruption of neuronal signal transduction pathways involved in memory. These pathways are altered by aberrant signaling, inflammation, oxidative damage, tau pathology, neuron loss, and synapse loss. We need to develop stage-specific interventions that not only block causal events in pathogenesis (aberrant tau phosphorylation, Aβ production and accumulation, and oxidative damage), but also address damage from these pathways that will not be reversed by targeting prodromal pathways. This approach would not only focus on blocking early events in pathogenesis, but also adequately correct for loss of synapses, substrates for neuroprotective pathways (e.g., docosahexaenoic acid), defects in energy metabolism, and adverse consequences of inappropriate compensatory responses (aberrant sprouting). Monotherapy targeting early single steps in this complicated cascade may explain disappointments in trials with agents inhibiting production, clearance, or aggregation of the initiating Aβ peptide or its aggregates. Both plaque and tangle pathogenesis have already reached AD levels in the more vulnerable brain regions during the “prodromal” period prior to conversion to “mild cognitive impairment (MCI).” Furthermore, many of the pathological events are no longer proceeding in series, but are going on in parallel. By the MCI stage, we stand a greater chance of success by considering pleiotropic drugs or cocktails that can independently limit the parallel steps of the AD cascade at all stages, but that do not completely inhibit the constitutive normal functions of these pathways. Based on this hypothesis, efforts in our laboratories have focused on the pleiotropic activities of omega-3 fatty acids and the anti-inflammatory, antioxidant, and anti-amyloid activity of curcumin in multiple models that cover many steps of the AD pathogenic cascade (Cole and Frautschy, Alzheimers Dement 2:284–286, 2006)

    Search for the pair production of light top squarks in the e(+/-)mu(-/+) final state in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for the production of a pair of top squarks at the LHC is presented. This search targets a region of parameter space where the kinematics of top squark pair production and top quark pair production are very similar, because of the mass difference between the top squark and the neutralino being close to the top quark mass. The search is performed with 35.9 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV, collected by the CMS detector in 2016, using events containing one electron-muon pair with opposite charge. The search is based on a precise estimate of the top quark pair background, and the use of the M-T2 variable, which combines the transverse mass of each lepton and the missing transverse momentum. No excess of events is found over the standard model predictions. Exclusion limits are placed at 95% confidence level on the production of top squarks up to masses of 208 GeV for models with a mass difference between the top squark and the lightest neutralino close to that of the top quark.Peer reviewe

    Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at s=13 TeV

    Get PDF
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb(-1) recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.Peer reviewe

    Measurement of B_{s}^{0} meson production in pp and PbPb collisions at \sqrt{SNN}

    Get PDF
    The production cross sections of B_{s}^{0} mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B_{s}^{0}→J/ψϕ→μ^{+}μ^{−}K^{+}K^{−} at a center-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range |y|<2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p_{T}) of the B_{s}^{0} mesons in the range of 7 to 50 GeV/c and is compared to the predictions of perturbative QCD calculations. The B_{s}^{0} production yield in PbPb collisions is measured in two p_{T} intervals, 7 to 15 and 15 to 50 GeV/c, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor (R_{AA}) is found to be 1.5±0.6(stat)±0.5(syst) for 7–15 GeV/c, and 0.87±0.30(stat)±0.17(syst) for 15–50 GeV/c, respectively. Within current uncertainties, the B_{s}^{0} results are consistent with models of strangeness enhancement, and suppression by parton energy loss, as observed for the B+ mesons

    Search for Higgs boson pair production in the gamma gamma b(b)over-bar final state in pp collisions at root s=13 TeV

    Get PDF
    A search is presented for the production of a pair of Higgs bosons, where one decays into two photons and the other one into a bottom quark-antiquark pair. The analysis is performed using proton-proton collision data at root s = 13 TeV recorded in 2016 by the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1) . The results are in agreement with standard model (SM) predictions. In a search for resonant production, upper limits are set on the cross section for new spin-0 or spin-2 particles. For the SM-like nonresonant production hypothesis, the data exclude a product of cross section and branching fraction larger than 2.0 fb at 95% confidence level (CL), corresponding to about 24 times the SM prediction. Values of the effective Higgs boson self-coupling K X are constrained to be within the range -11 < K-lambda < 17 at 95% CL, assuming all other Higgs boson couplings are at their SM value. The constraints on K-lambda, are the most restrictive to date. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe

    Measurement of the tt¯ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at √s = 13 TeV

    Get PDF
    A measurement of the top quark–antiquark pair production cross section σtt¯ in proton–proton collisions at a centre-of-mass energy of 13TeV is presented. The data correspond to an integrated luminosity of 35.9fb−1, recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events (e ± μ ∓, μ+μ−, e+e−) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of mMCt=172.5GeV the fit yields a measured cross section σtt¯=803±2(stat)±25(syst)±20(lumi)pb, in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the POWHEG simulation is performed. The measured value of mMCt=172.33±0.14(stat)+0.66−0.72(syst)GeV is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions

    Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two bquarks and two tau leptons in proton-proton collisions at root s=13 TeV The CMS Collaboration

    Get PDF
    A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two tau leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM + S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb(-1), accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeVare probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction B(h -> aa -> 2 tau 2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM + S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe
    corecore