228 research outputs found

    A high-power, 600um wavelength free-electron laser

    Get PDF

    A new approach to improving the efficiency of fel oscillator simulations

    Get PDF
    During the last year we have been benchmarking FEL oscillator simulation codes against the measured performance of the three Jefferson Lab oscillator FELs. While one might think that a full 4D simulation is de facto the best predictor of performance, the simulations are computationally intensive, even when analytical approximations to the electron bunch longitudinal distribution are used. In this presentation we compare the predictions of the 4D FEL interaction codes Genesis and Medusa, in combination with the optical code OPC, with those using a combination of the 2D & 3D versions of these codes, which can be run quickly on a single CPU core desktop computer

    Applying Rule Ensembles to the Search for Super-Symmetry at the Large Hadron Collider

    Get PDF
    In this note we give an example application of a recently presented predictive learning method called Rule Ensembles. The application we present is the search for super-symmetric particles at the Large Hadron Collider. In particular, we consider the problem of separating the background coming from top quark production from the signal of super-symmetric particles. The method is based on an expansion of base learners, each learner being a rule, i.e. a combination of cuts in the variable space describing signal and background. These rules are generated from an ensemble of decision trees. One of the results of the method is a set of rules (cuts) ordered according to their importance, which gives useful tools for diagnosis of the model. We also compare the method to a number of other multivariate methods, in particular Artificial Neural Networks, the likelihood method and the recently presented boosted decision tree method. We find better performance of Rule Ensembles in all cases. For example for a given significance the amount of data needed to claim SUSY discovery could be reduced by 15 % using Rule Ensembles as compared to using a likelihood method.Comment: 24 pages, 7 figures, replaced to match version accepted for publication in JHE

    From weak-scale observables to leptogenesis

    Get PDF
    Thermal leptogenesis is an attractive mechanism for generating the baryon asymmetry of the Universe. However, in supersymmetric models, the parameter space is severely restricted by the gravitino bound on the reheat temperature TRHT_{RH}. For hierarchical light neutrino masses, it is shown that thermal leptogenesis {\it can} work when TRH∌109T_{RH} \sim 10^{9} GeV. The low-energy observable consequences of this scenario are BR(Ï„â†’â„“Îł)∌10−8−10−9 BR(\tau \to \ell \gamma) \sim 10^{-8} - 10^{-9} . For higher TRHT_{RH}, thermal leptogenesis works in a larger area of parameter space, whose observable consequences are more ambiguous. A parametrisation of the seesaw in terms of weak-scale inputs is used, so the results are independent of the texture chosen for the GUT-scale Yukawa matrices.Comment: a few references adde

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore