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Abstract We propose a technique that we call HodgeRank for ranking data that may
be incomplete and imbalanced, characteristics common in modern datasets coming
from e-commerce and internet applications. We are primarily interested in cardinal
data based on scores or ratings though our methods also give specific insights on
ordinal data. From raw ranking data, we construct pairwise rankings, represented as
edge flows on an appropriate graph. Our statistical ranking method exploits the graph
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204 X. Jiang et al.

Helmholtzian, which is the graph theoretic analogue of the Helmholtz operator or
vector Laplacian, in much the same way the graph Laplacian is an analogue of the
Laplace operator or scalar Laplacian. We shall study the graph Helmholtzian using
combinatorial Hodge theory, which provides a way to unravel ranking information
from edge flows. In particular, we show that every edge flow representing pairwise
ranking can be resolved into two orthogonal components, a gradient flow that repre-
sents the l2-optimal global ranking and a divergence-free flow (cyclic) that measures
the validity of the global ranking obtained—if this is large, then it indicates that the
data does not have a good global ranking. This divergence-free flow can be further
decomposed orthogonally into a curl flow (locally cyclic) and a harmonic flow (locally
acyclic but globally cyclic); these provides information on whether inconsistency in
the ranking data arises locally or globally. When applied to statistical ranking prob-
lems, Hodge decomposition sheds light on whether a given dataset may be globally
ranked in a meaningful way or if the data is inherently inconsistent and thus could not
have any reasonable global ranking; in the latter case it provides information on the
nature of the inconsistencies. An obvious advantage over the NP-hardness of Kemeny
optimization is that HodgeRank may be easily computed via a linear least squares
regression. We also discuss connections with well-known ordinal ranking techniques
such as Kemeny optimization and Borda count from social choice theory.

Keywords Statistical ranking · Rank aggregation · Combinatorial Hodge
theory · Discrete exterior calculus · Combinatorial Laplacian · Hodge Laplacian ·
Graph Helmholtzian · HodgeRank · Kemeny optimization · Borda count

Mathematics Subject Classification (2000) 68T05 · 58A14 · 90C05 · 90C27 ·
91B12 · 91B14

1 Introduction

The problem of ranking in various contexts has become increasingly important in
machine learning. Many datasets1 require some form of ranking to facilitate identifi-
cation of important entries, extraction of principal attributes, and to perform efficient
search and sort operations. Modern internet and e-commerce applications have spurred
an enormous growth in such datasets: Google’s search engine, CiteSeer’s citation
database, eBay’s feedback-reputation mechanism, Netflix’s movie recommendation
system, all accumulate a large volume of data that needs to be ranked.

These modern datasets typically have one or more of the following features that ren-
der traditional ranking methods (such as those in social choice theory) inapplicable or
ineffective: (1) unlike traditional ranking problems such as votings and tournaments,
the data often contains cardinal scores instead of ordinal orderings; (2) the given data
is largely incomplete with most entries missing a substantial amount of information;
(3) the data will almost always be imbalanced where the amount of available informa-

1 We use the word data in the singular (we have no use for the word datum in this paper). A collection of
data would be called a dataset.
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Ranking with Hodge theory 205

tion varies widely from entry to entry and/or from criterion to criterion; (4) the given
data often lives on a large complex network, either explicitly or implicitly, and the
structure of this underlying network is itself important in the ranking process. These
new features have posed new challenges and call for new techniques. We will look at
a method that addresses them to some extent.

A fundamental problem here is to globally rank a set of alternatives based on scores
given by voters. Here the words ‘alternatives’ and ‘voters’ are used in a generalized
sense that depends on the context. For example, the alternatives may be websites
indexed by Google, scholarly articles indexed by CiteSeer, sellers on eBay, or mov-
ies on Netflix; the voters in the corresponding contexts may be other websites, other
scholarly articles, buyers, or viewers. The ‘voters’ could also refer to groups of voters:
e.g. websites, articles, buyers, or viewers grouped respectively by topics, authorship,
buying patterns, or movie tastes. The ‘voters’ could even refer to something entirely
abstract, such as a collection of different criteria used to judge the alternatives.

The features (1–4) can be observed in the aforementioned examples. In the
eBay/Netflix context, a buyer/viewer would assign cardinal scores (1 through 5 stars)
to sellers/movies instead of ranking them in an ordinal fashion; the eBay/Netflix data-
sets are highly incomplete since most buyers/viewers would have rated only a very
small fraction of the sellers/movies, and also highly imbalanced since a handful of
popular sellers/blockbuster movies would have received an overwhelming number of
ratings while the vast majority would get only a moderate or small number of ratings.
The datasets from Google and CiteSeer have obvious underlying network structures
given by hyperlinks and citations, respectively. Somewhat less obvious are the network
structures underlying the datasets from eBay and Netflix, which come from aggregat-
ing the pairwise comparisons of buyers/movies over all sellers/viewers. Indeed, we
shall see that in all these ranking problems, graph structures naturally arise from pair-
wise comparisons, irrespective of whether there is an obvious underlying network (e.g.
from citation, friendship, or hyperlink relations) or not, and this serves to place rank-
ing problems of seemingly different nature on an equal graph-theoretic footing. The
incompleteness and imbalance of the data are then manifested in the (edge) sparsity
structure and (vertex) degree distribution of pairwise comparison graphs.

In collaborative filtering applications, one often encounters a personalized ranking
problem, when one needs to find a global ranking of alternatives that generates the
most consensus within a group of voters who share similar interests/tastes. While the
statistical ranking problem investigated in this paper could play a fundamental role
in such personalized ranking problems, there is also the equally important problem
of clustering voters into interest groups, which we do not address in this paper.2 We
would like to stress that in this paper we only concern ourselves with the ranking prob-
lem but not the clustering problem. So while we have used the Netflix prize dataset
in our studies, our paper should not be viewed as an attempt to solve the Netflix prize
problem.

2 Nevertheless the notions of local and global inconsistencies introduced in Sects. 2.4 and 5 could certainly
be used as a criterion for such purposes, i.e. an interest group is one whose within-group inconsistency is
small.
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In a nutshell, our methods, collectively called HodgeRank, analyze pairwise rank-
ings represented as edge flows on a graph using discrete or combinatorial Hodge
theory. Among other things, combinatorial Hodge theory provides us with a mean to
determine a global ranking that also comes with a ‘certificate of reliability’ for the
validity of this global ranking. While Hodge theory is well-known to pure mathemati-
cians as a corner stone of geometry and topology, and to applied mathematician as an
important tool in computational electromagnetics and fluid dynamics, its application
to statistical ranking problems has, to the best of our knowledge, never been studied.3

In HodgeRank, the graph in question has as its vertices the alternatives to be ranked,
voters’ preferences are then quantified and aggregated (we will say how later) into an
edge flow on this graph. Hodge theory then yields an orthogonal decomposition of the
edge flow into three components: a gradient flow that is globally acyclic, a harmonic
flow that is locally acyclic but globally cyclic, and a curl flow that is locally cyclic. This
decomposition is known as the Hodge or Helmholtz decomposition. The usefulness of
the decomposition lies in the fact that the gradient flow component induces a global
ranking of the alternatives. Unlike the computationally intractable Kemeny optimal,
this may be easily computed via a linear least squares problem. Furthermore, the l2-
norm of the least squares residual, which represents the contribution from the sum of
the remaining curl flow and harmonic flow components, quantifies the validity of the
global ranking induced by the gradient flow component. If the residual is small, then
the gradient flow accounts for most of the variation in the underlying data and therefore
the global ranking obtained from it is expected to be a majority consensus. On the other
hand, if the residual is large, then the underlying data is plagued with cyclic inconsis-
tencies (i.e. intransitive preference relations of the form a � b � c � · · · � z � a)
and one may not assign any reasonable global ranking to it.

We would like to point out here that cyclic inconsistencies are not necessarily due
to error or noise in the data but may very well be an inherent characteristic of the data.
As the famous impossibility theorems from social choice theory [2,39] have shown,
inconsistency (or, rather, intransitivity) is inevitable in any societal preference aggre-
gation that is sophisticated enough. Social scientists have, through empirical studies,
observed that preference judgement of groups or individuals on a list of alternatives
do in fact exhibit such irrational or inconsistent behavior. Indeed in any group decision
making process, a lack of consensus is the norm rather than the exception in our every-
day experience. This is the well-known Condorcet paradox [15]: the majority prefers
a–b and b–c, but may yet prefer c–a. Even a single individual making his own pref-
erence judgements could face such dilemma—if he uses multiple criteria to rank the
alternatives. As such, the cyclic inconsistencies is intrinsic to any real world ranking
data and should be thoroughly analyzed. Hodge theory again provides a mean to do
so. The curl flow and harmonic flow components of an edge flow quantify respectively
the local and global cyclic inconsistencies.

Loosely speaking, a dominant curl flow component suggests that the inconsistencies
are of a local nature while a dominant harmonic flow component suggests that they are
of a global nature. If most of the inconsistencies come from the curl (local) component

3 Hodge theory has recently also found other applications in statistical learning theory [5].

123



Ranking with Hodge theory 207

while the harmonic (global) component is small, then this roughly translates to mean
that the ordering of closely ranked alternatives is unreliable but that of very differently
ranked alternatives is reliable, i.e. we cannot say with confidence whether the ordering
of the 27th, 28th, 29th ranked items makes sense but we can say with confidence that
the 4th, 60th, 100th items should be ordered according to their rank. In other words,
Condorcet paradox may well apply to items ranked closed together but not to items
ranked far apart. For example, if a large number of gourmets (voters) are asked to state
their preferences on an extensive range of food items (alternatives), there may not be
a consensus for their preferences with regard to hamburgers, hot dogs, and pizzas and
there may not be a consensus for their preferences with regard to caviar, foie gras, and
truffles; but there may well be a near universal preference for the latter group of food
items over the former group. In this case, the inconsistencies will be mostly local and
we should expect a large curl flow component. If in addition the harmonic flow com-
ponent is small, then most of the inconsistencies happen locally and we could interpret
this to mean that the global ranking is valid on a coarse scale (ranking different groups
of food) but not on a fine scale (ranking similar food items belonging to a particular
group). We refer the reader to Sect. 7.1 for an explicit example based on the Netflix
prize dataset.

1.1 What’s new

The main contribution of this paper is in the application of Hodge decomposition to the
analysis of ranking data. We show that this approach has several attractive features: (1)
it generalizes the classical Borda Count method in voting theory to data that may have
missing values; (2) it provides a way to analyze inherent inconsistencies or conflicts in
the ranking data; (3) it is flexible enough to be combined with other techniques: these
include other ways to form pairwise rankings reflecting prior knowledge. Although
completely natural, Hodge theory has, as far as we know, never been applied to the
study of ranking.

We emphasize two conceptual aspects underlying this work that are particularly
unconventional: (1) We believe that obtaining a global ranking, which is the main if
not the sole objective of all existing work on rank aggregation, gives only an incom-
plete picture of the ranking data—one also needs a ‘certificate of reliability’ for the
global ranking. Our method provides this certificate by measuring also the local and
global inconsistent components of the ranking data. (2) We believe that with the right
mathematical model, rank aggregation need not be a computationally intractable task.
The model that we proposed in this paper reduces rank aggregation to a linear least
squares regression, avoiding usual NP-hard combinatorial optimization problems such
as finding Kemeny optima or minimum feedback arc sets.

Hodge and Helmholtz decompositions are of course well-known in mathematics
and physics, but usually in a continuous setting where the underlying spaces have the
structure of a Riemannian manifold or an algebraic variety. The combinatorial Hodge
theory that we presented here is arguably a trivial case with the simplest possible
underlying space—a graph. Many of the difficulties in developing Hodge theory in
differential and algebraic geometry simply do not surface in our case. However this
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also makes combinatorial Hodge theory accessible—the way we developed and pre-
sented it essentially requires nothing more than some elementary matrix theory and
multivariate calculus. We are unaware of similar treatments in the existing literature
and would consider our elementary treatment a minor expository contribution that
might help popularize the use of Hodge decomposition and the graph Helmholtzian,
possibly to other areas in data analysis and machine learning.

1.2 Organization of this paper

In Sect. 2 we introduce the main problem and discuss how a pairwise comparison
graph may be constructed from data comprising cardinal scores given by voters on
alternatives and how a simple least squares regression may be used to compute the
desired solution. We define the combinatorial curl, a measure of local (triangular)
inconsistency for such data, and also the combinatorial gradient and combinatorial
divergence. Section 3 describes a purely matrix-theoretic view of Hodge theory, but at
the expense of some geometric insights. This deficiency is rectified in Sect. 4, where
we introduce a graph-theoretic Hodge theory. We first remind the reader how one may
construct a d-dimensional simplicial complex from any given graph (the pairwise
comparison graph in our case) by simply filling-in all its k-cliques for k ≤ d. Then
we will introduce combinatorial Hodge theory for a general d-dimensional simplicial
complex but focusing on the d = 2 case and its relevance to the ranking problem. In
Sect. 5 we discuss the implications of Hodge decomposition applied to ranking, with a
deeper analysis on the least squares method in Sect. 2. A discussion of the connections
with Kemeny optimization and Borda count in social choice theory can be found in
Sect. 6. Numerical experiments on three real datasets are given in Sect. 7 to illustrate
the basic ideas.

1.3 Notations

Let V be a finite set. We will adopt the following notation from combinatorics:

(
V
k

)
:= set of all k − element subset of V .

In particular
(

V
2

)
would be the set of all unordered pairs of elements of V and

(
V
3

)
would be the set of all unordered triples of elements of V (the sets of ordered pairs
and ordered triples will be denoted V × V and V × V × V as usual). We will not
distinguish between V and

(
V
1

)
. Ordered and unordered pairs will be delimited by

parentheses (i, j) and braces {i, j} respectively, and likewise for triples and n-tuples
in general.

We will use positive integers to label alternatives and voters. Henceforth, V will
always be the set {1, . . . , n} and will denote a set of alternatives to be ranked. In our
approach to statistical ranking, these alternatives are represented as vertices of a graph.
Λ = {1, . . . , m} will denote a set of voters. For i, j ∈ V , we write i � j to mean that
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Graph theory Linear algebra Vec. calculus Topology Ranking
Function on Vector in R

n Potential 0-cochain Score
vertices function function
Edge flow Skew-symmetric Vector field 1-cochain Pairwise

matrix in R
n×n ranking

Triangular flow Skew-symmetric hyper- Tensor field 2-cochain Triplewise
-matrix in R

n×n×n ranking

alternative i is preferred over alternative j . If we wish to emphasize the preference
judgement of a particular voter α ∈ Λ, we will write i �α j .

Since in addition to ranking theoretic terms, we have borrowed terminologies from
graph theory, vector calculus, linear algebra, and algebraic topology, we provide a
table of correspondence for easy reference.

As the reader will see, the notions of gradient, divergence, curl, Laplace operator,
and Helmholtz operator from vector calculus and topology will play important roles
in statistical ranking. One novelty of our approach lies in extending these notions to
the other three columns, where most of them have no well-known equivalent. For
example, what we will call a harmonic ranking is central to the question of whether a
global ranking is feasible. This notion is completely natural from the vector calculus
or topology point-of-view, they correspond to solutions of the Helmholtz equation or
homology classes. However, it will be hard to define harmonic ranking directly in
social choice theory without this insight, and we suspect that it is the reason why the
notion of harmonic ranking has never been discussed in existing studies of ranking in
social choice theory and other fields.

2 Statistical ranking on graphs

The central problem discussed in this paper is that of determining a global ranking
from a dataset comprising a number of alternatives ranked by a number of voters. This
is a problem that has received attention in fields including decision science [22,23,37],
financial economics [4,30], machine learning [6,12,18,21], social choice [2,39,36],
statistics [16,27,28,33,34], among others. Our objective towards statistical ranking
is two-fold: like everybody else, we want to deduce a global ranking from the data
whenever possible; but in addition to that, we also want to detect when the data does
not permit a statistically meaningful global ranking and in which case analyze the
obstructions to ‘global rankability’.

Let V = {1, . . . , n} be the set of alternatives to be ranked and Λ = {1, . . . , m}
be a set of voters. The implicit assumption is that each voter would have rated, i.e.
assigned cardinal scores or given an ordinal ordering to, a small fraction of the alter-
natives. But no matter how incomplete the rated portion is, one may always convert
such ratings into pairwise rankings that have no missing values with the following
recipe. For each voter α ∈ Λ, the pairwise ranking matrix of α is a skew-symmetric
matrix Y α ∈ R

n×n , i.e. for each ordered pair (i, j) ∈ V × V , we have

Y α
i j = −Y α

j i .
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Informally, Y α
i j measures the ‘degree of preference’ of the i th alternative over the

j th alternative held by the αth voter. Studies of ranking problems in different
disciplines have led to rather different ways of quantifying such ‘degree of prefer-
ence’. In Sect. 2.3, we will see several ways of defining Y α

i j (as score difference, score
ratio, and score ordering) coming from decision science, machine learning, social
choice theory, and statistics. If the voter α did not compare alternatives i and j , then
Y α

i j is considered a missing value and set to be 0 for convenience; this manner of
handling missing values allows Y α to be a skew-symmetric matrix for each α ∈ Λ.
Nevertheless we could have assigned any arbitrary value or a non-numerical symbol
to represent missing values, and this would not have affected our algorithmic results
because of our use of the following weight function.

Define the weight function w : Λ× V × V → [0,∞) via

wα
i j = w(α, i, j) =

{
1 if α made a pairwise comparison for {i, j},
0 otherwise.

Therefore wα
i j = 0 iff Y α

i j is a missing value. Note that W α = [wα
i j ] is a symmetric

{0, 1}-valued matrix; but more generally, wα
i j may be chosen as the capacity (in the

graph theoretic sense) if there are multiple comparisons of i and j by voter α. The
pairs (i, j) for which w(α, i, j) = 1 for some α ∈ Λ are known as crucial pairs in
the machine learning literature.

Our approach towards statistical ranking is to minimize a weighted sum of pairwise
loss of a global ranking on the given data over a model class M of all global rankings.
We begin with a simple sum-of-squares loss function,

min
X∈MG

∑
α,i, j

wα
i j (Xi j − Y α

i j )
2, (1)

where the model class MG is the set of rank-2 skew-symmetric matrices,

MG = {X ∈ R
n×n | Xi j = s j − si , s : V → R}. (2)

Any X ∈MG induces a global ranking on the alternatives 1, . . . , n via the rule i � j
iff si ≥ s j . Note that ties, i.e. i � j and j � i , are allowed and this happens precisely
when si = s j .

For ranking data given in terms of cardinal scores, this simple scheme preserves
the magnitudes of the ratings, instead of merely the ordering, when we have globally
consistent data (see Definition 3). Moreover, it may also be computed more easily
than many other loss functions although the computational cost depends ultimately
on the choice of M. For example, Kemeny optimization in classical social choice
theory, which is known to be NP-hard [17], may be realized as a special case where
Y α

i j ∈ {±1} and M is the Kemeny model class,

MK := {X ∈ R
n×n | Xi j = sign(s j − si ), s : V → R}. (3)
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The function sign : R→ {±1} takes nonnegative numbers to 1 and negative numbers
to −1. A binary valued Y α

i j is the standard scenario in binary pairwise comparisons
[1,2,13,21,28]; in this context, a global ranking is usually taken to be synonymous as
a Kemeny optimal. We will discuss Kemeny optimization in greater details in Sect. 6.

2.1 Pairwise comparison graphs and pairwise ranking flows

A graph structure arises naturally from ranking data as follows. Let G = (V, E) be
an undirected graph whose vertex set is V , the set of alternatives to be ranked, and
whose edge set is

E =
{
{i, j} ∈ (V

2

) ∣∣ ∑
α

wα
i j > 0

}
, (4)

i.e. the set of pairs {i, j} where pairwise comparisons have been made. We call such
G a pairwise comparison graph. One can further associate weights on the edges as
capacity, e.g. wi j =∑

α wα
i j .

A pairwise ranking can be viewed as edge flows on G, i.e. a function X : V×V → R

that satisfies

{
X (i, j) = −X ( j, i) if {i, j} ∈ E,

X (i, j) = 0 otherwise.
(5)

It is clear that a skew-symmetric matrix [Xi j ] induces an edge flow and vice versa. So
henceforth we will not distinguish between edge flows and skew-symmetric matrices
and will often write Xi j in place of X (i, j).

Borrowing terminologies from vector calculus, an edge flow of the form Xi j = s j−
si , i.e. X ∈MG , may be regarded as the gradient of a potential function s : V → R

(or negative potential, depending on sign convention). In the language of ranking,
a potential function is a score function or utility function on the set of alternatives,
assigning a score s(i) = si to alternative i . Note that any such function defines a
global ranking as discussed after (2). To be precise, we will define gradient as follows.

Definition 1 The combinatorial gradient operator maps a potential function on the
vertices s : V → R to an edge flow grad s : V × V → R via

(grad s)(i, j) = s j − si . (6)

An edge flow that has this form will be called a gradient flow.

In other words, the combinatorial gradient takes global rankings to pairwise rank-
ings. Pairwise rankings that arise in this manner will be called globally consistent
(formally defined in Definition 3). Given a globally consistent pairwise ranking X ,
we can easily solve grad(s) = X to determine a score function s (up to an additive
constant), and from s we can obtain a global ranking of the alternatives in the manner
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described after (2). Observe that the set of all globally consistent pairwise rankings in
(2) may be written as MG = {grad s | s : V → R} = im(grad).

For convenience, we will drop the adjective ‘combinatorial’ from ‘combinatorial
gradient’. We may sometimes also drop the adjective ‘pairwise’ in ‘globally consistent
pairwise ranking’ when there is no risk of confusion.

The optimization problem (1) can be rewritten in the form of a weighted l2-
minimization on a pairwise comparison graph

min
X∈MG

‖X − Ȳ‖22,w = min
X∈MG

⎡
⎣ ∑
{i, j}∈E

wi j (Xi j − Ȳi j )
2

⎤
⎦ (7)

where

wi j :=
∑
α

wα
i j and Ȳi j :=

∑
α wα

i j Y
α
i j∑

α wα
i j

. (8)

A minimizer thus corresponds to an l2-projection of a pairwise ranking edge flow Ȳ
onto the space of gradient flows. We note that W = [wi j ] =∑

α W α is a symmetric
nonnegative-valued matrix. This choice of W is not intended to be rigid. One could
for example define W to incorporate prior knowledge of the relative importance of
paired comparisons as judged by voters.

Combinatorial Hodge theory provides a geometric interpretation of the minimizer
and residual of (7). Before going further, we present several examples of pairwise
ranking arising from applications.

2.2 Pairwise rankings

Humans are unable to make accurate preference judgement on even moderately large
sets. In fact, it has been argued that most people can rank only between 5 and 9 alter-
natives at a time [31]. This is probably why many rating scales (e.g. the ones used by
Amazon, eBay, Netflix, YouTube) are all based on a 5-star scale. Hence one expects
large human-generated ranking data to be at best partially ordered (with chains of
lengths mostly between 5 and 9, if [31] is right). For most people, it is a harder task to
rank or rate 20 movies than to compare the movies a pair at a time. In certain settings
such as tennis tournaments and wine tasting, only pairwise comparisons are possible.
Pairwise comparison methods, which involve the smallest partial rankings, is thus
natural for analyzing ranking data.

Pairwise comparisons also help reduce bias due to the arbitrariness of rating scale
by adopting a relative measure. As we will see in Sect. 2.3, pairwise comparisons
provide a way to handle missing values, which are expected because of the general
lack of incentives or patience for a human to process a large dataset. For these reasons,
pairwise comparison methods have been popular in psychology, management sci-
ence, social choice theory, and statistics [2,13,23,28,37,41]. Such methods are also
getting increasing attention from the machine learning community as they may be
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adapted for studying classification problems [18,20,21]. We will present two very
different instances where pairwise rankings arise: recommendation systems and
exchange economic systems.

2.2.1 Recommendation systems

The generic scenario in recommendation systems is that there are m voters rating n
alternatives. For example, in the Netflix context, viewers rate movies on a scale of 5
stars [6]; in financial markets, analysts rate stocks or securities with five classes of
recommendations [4]. In these cases, we let A = [aαi ] ∈ R

m×n represent the voter-
alternative matrix. A typically has a large number of missing values; for example, the
dataset that Netflix released for its prize competition contains a viewer-movie matrix
with 99% of its values missing. The standard problem here is to predict these missing
values from the given data but we caution the reader again that this is not the problem
addressed in our paper. Instead of estimating the missing values of A, we want to learn
a global ranking of the alternatives from A, without having to first estimate the missing
values. We note here the striking difference that if one considers pairwise rankings
instead, then only 0.22% of the pairwise comparison values are missing from the
Netflix dataset. This partly motivates our discussion in Sect. 2.3. An actual numerical
experiment can be found in Sect. 7.1.

2.2.2 Exchange economic systems

A purely exchange economic system may be described by a graph G = (V, E) with
vertex set V = {1, . . . , n} representing the n goods and edge set E ⊆ (

V
2

)
representing

feasible pairwise transactions. If the market is complete in the sense that every pair
of goods is exchangeable, then G is a complete graph. Suppose the exchange rate
between the i th and j th goods is given by

1 unit i = ai j unit j, ai j > 0.

Then the exchange rate matrix A = [ai j ] is a reciprocal matrix (possibly with miss-
ing values), i.e. ai j = 1/a ji for all i, j ∈ V . The reciprocal matrix was first used
for paired preference aggregation by Saaty [37] and later by Ma [30] for currency
exchange analysis. The problem of pricing is to look for a universal equivalent that
measures the values of goods (this is in fact an abstraction of the concept of money),
i.e. π : V → R such that

ai j = π j

πi
.

In complete markets where G is a complete graph, there exists a universal equivalent
if and only if the market is triangular arbitrage-free, i.e. ai j a jk = aik for all distinct
i, j, k ∈ V ; since in this case the transaction path i → j → k provides no gain nor
loss over a direct exchange i → k.
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Such a purely exchange economic system may be transformed into a pairwise rank-
ing problem via the logarithmic map,

Xi j = log ai j .

The triangular arbitrage-free condition is then equivalent to the transitivity condition
in (14), i.e.

Xi j + X jk + Xki = 0.

So asking if a universal equivalent exists is the same as asking if a global ranking
s : V → R exists so that Xi j = s j − si with si = log πi . This partly motivates our
discussion in Sect. 2.4. An actual numerical experiment can be found in Sect. 7.2.

2.3 Filling in missing values: average pairwise ranking

While the available raw ranking data A = [aαi ] ∈ R
m×n may be highly incomplete

(cf. Sect. 2.2.1), one may aggregate over all voters to get a pairwise ranking matrix
Y that is usually much more complete. Each of the following four statistics may be
regarded as a form of “average pairwise ranking” over all voters.

1. Arithmetic mean of score differences: The score difference refers to Y α
i j =

aα j − aαi . The arithmetic mean over all customers who have rated both i and j is

Ȳi j =
∑

α(aα j − aαi )

#{α | aαi , aα j exist} . (9)

This is translation invariant.
2. Geometric mean of score ratios: The score ratio refers to Y α

i j = aα j/aαi . Assume
that aαi > 0. The (log) geometric mean over all customers who have rated both i
and j is

Ȳi j =
∑

α(log aα j − log aαi )

#{α | aαi , aα j exist} . (10)

This is scale invariant.
3. Binary comparison: Here Y α

i j = sign(aα j − aαi ). Its average is the probability
difference that the alternative j is preferred to i than the other way round,

Ȳi j = Pr{α | aα j > aαi } − Pr{α | aα j < aαi }. (11)

This is invariant up to a monotone transformation.
4. Logarithmic odds ratio: As in the case of binary comparison, except that we

adopt a logarithmic scale

Ȳi j = log
Pr{α | aα j ≥ aαi }
Pr{α | aα j ≤ aαi } . (12)

This is also invariant up to a monotone transformation.
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The first model leads to the concept of position-rules in social choice theory [36] and it
has also been used in machine learning recently [12]. The second model has appeared
in multi-criteria decision theory [37]. The third and fourth models are known as linear
model [34] and Bradley-Terry model [7] respectively in the statistics and psychology
literature. There are other plausible choices for defining Ȳi j , e.g. [33,41], but we will
not discuss more of them here. It suffices to note that there is a rich variety of tech-
niques to preprocess raw ranking data into the pairwise ranking edge flow Ȳi j that
serves as input to our Hodge theoretic method. However, it should be noted that the
l2-optimization on graphs in (7) may be applied with any of the four choices above
since only the knowledge of Ȳi j is required but the sum-of-squares and Kemeny opti-
mization in (1) and (3) require (respectively) the original score difference and original
ordering be known for each voter.

2.4 Measuring local inconsistency: combinatorial curl

Upon constructing an average pairwise ranking from the raw data, we need a statis-
tics to quantify its inconsistency. Again we will borrow a terminology from vector
calculus and define a notion of combinatorial curl as a measure of triangular incon-
sistency.

Given a pairwise ranking represented as an edge flow X on a graph G = (V, E),
we expect a ‘consistency’ property: following a loop i → j → · · · → i where each
edge is in E , the amount of scores raised should be equal to the amount of scores
lowered; so after a loop of comparisons we should return to the same score on the
same alternative. Since the simplest loop is a triangular loop i → j → k → i ,
the ‘basic unit’ of inconsistency ought to be triangular in nature, which leads us to
Definition 2.

We will first define a notion analogous to edge flows. The triangular flow on G is
a function Φ : V × V × V → R that satisfies

Φ(i, j, k) = Φ( j, k, i) = Φ(k, i, j) = −Φ( j, i, k) = −Φ(i, k, j) = −Φ(k, j, i),

i.e. an odd permutation of the arguments of Φ changes its sign while an even permu-
tation preserves its sign.4 A triangular flow describes triplewise rankings in the same
way an edge flow describes pairwise rankings.

Definition 2 Let X be an edge flow on a graph G = (V, E). Let

T (E) :=
{
{i, j, k} ∈ (V

3

) ∣∣ {i, j}, { j, k}, {k, i} ∈ E
}

4 A triangular flow is an alternating 3-tensor and may be represented as a skew-symmetric hypermatrix
[Φi jk ] ∈ R

n×n×n , much like an edge flow is an alternating 2-tensor and may be represented by a skew-
symmetric matrix [Xi j ] ∈ R

n×n . We will often write Φi jk in place of Φ(i, j, k).
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be the collection of triangles with every edge in E . We define the combinatorial curl
operator that maps edge flows to triangular flows by

(curl X)(i, j, k) =
{

Xi j + X jk + Xki if {i, j, k} ∈ T (E),

0 otherwise.
(13)

In other words, the combinatorial curl takes pairwise rankings to triplewise rank-
ings. Again, we will drop the adjective ‘combinatorial’ when there is no risk of confu-
sion. The skew-symmetry of X , i.e. Xi j = −X ji , guarantees that curl X is a triangular
flow, i.e.

(curl X)(i, j, k) = (curl X)( j, k, i) = (curl X)(k, i, j)

= −(curl X)( j, i, k) = −(curl X)(i, k, j)

= −(curl X)(k, j, i).

The curl of a pairwise ranking measures its triangular inconsistency. This extends the
consistency index of Kendall and Smith [28], which counts the number of circular
triads, from ordinal settings to cardinal settings. Note that for binary pairwise ranking
where Xi j ∈ {±1}, the absolute value |(curl X)(i, j, k)| may only take two values, 1
or 3. The triangle {i, j, k} ∈ T (E) contains a cyclic ranking or circular triad if and
only if |(curl X)(i, j, k)| = 3. If G is a complete graph, the number of circular triads
is known [28] to be

N = n

24
(n2 − 1)− 1

8

∑
i

⎡
⎣∑

j

Xi j

⎤
⎦

2

.

For ranking data given in terms of cardinal scores and that is generally incomplete,
curl plays an extended role in addition to just quantifying the triangular inconsistency.
We now formally define some ranking theoretic notions in terms of the combinatorial
gradient and combinatorial curl.

Definition 3 Let X : V × V → R be a pairwise ranking edge flow on a pairwise
comparison graph G = (V, E).

1. X is called consistent on {i, j, k} ∈ T (E) if it is curl-free on {i, j, k}, i.e.

(curl X)(i, j, k) = Xi j + X jk + Xki = 0.

This implies that curl(X)(σ (i), σ ( j), σ (k)) = 0 for every permutation σ .
2. X is called globally consistent if it is a gradient of a score function, i.e.

X = grad s for some s : V → R.

3. X is called locally consistent or triangularly consistent if it is curl-free on every
triangle in T (E), i.e. every 3-clique of G.
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Fig. 1 A harmonic pairwise
ranking, which is locally
consistent on every triangle but
inconsistent along the loop
A→ B → C → D→ E →
F → A

B

1 2

1

1

1

1

1

2

C

D

EF

A

4. X is called a cyclic ranking if it contains any inconsistencies, i.e. there exist
i, j, k, . . . , p, q ∈ V such that

Xi j + X jk + · · · + X pq + Xqi 
= 0.

Clearly any gradient flow must be curl-free everywhere, i.e. the well-known identity
in vector calculus

curl ◦ grad = 0

is also true for combinatorial curl and combinatorial gradient (a special case of
Lemma 1). So global consistency implies local consistency. A qualified converse may
be deduced from the Hodge decomposition theorem (see also Theorem 4): a curl-free
flow on a complete graph must necessarily be a gradient flow, or putting it another
way, a locally consistent pairwise ranking must necessarily be a globally consistent
pairwise ranking when there are no missing values, i.e. if the pairwise comparison
graph is a complete graph (every pair of alternatives has been compared).

When G is an incomplete graph, the condition that X is curl-free on every triangle
in the graph will not be enough to guarantee that it is a gradient flow. The reason lies in
that curl only takes into account triangular inconsistencies; but since there are missing
edges in the pairwise comparison graph G, it is possible that non-triangular cyclic
rankings of lengths greater than three can occur. For example, Fig. 1 shows a pairwise
ranking that is locally consistent on every triangle but globally inconsistent, since it
contains a cyclic ranking of length six. Fortunately, Hodge decomposition theorem
will tell us that all such cyclic rankings lie in a subspace of harmonic rankings, which
can be characterized as the kernel of some combinatorial Laplacians.
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3 A matrix theoretic view of Hodge decomposition

We will see in this section that edge flows, gradient flows, harmonic flows, and curl
flows can all be represented as specially structured skew-symmetric matrices. In this
framework, the Hodge decomposition theorem may be viewed as an orthogonal direct
sum decomposition of the space of skew-symmetric matrices into three subspaces.
A formal geometric treatment of combinatorial Hodge theory will be given in Sect. 4.

Recall that a matrix X ∈ R
n×n is said to be skew-symmetric if Xi j = −X ji for all

i, j ∈ V := {1, . . . , n}. One knows from linear algebra that any square matrix A may
be written uniquely as a sum of a symmetric and a skew-symmetric matrix,

A = 1
2 (A + A�)+ 1

2 (A − A�).

We will denote5

A := {X ∈ R
n×n | X� = −X}, and S := {X ∈ R

n×n | X� = X}.

It is perhaps interesting to note that semidefinite programming takes place in the cone
of symmetric positive definite matrices in S but the optimization problems in this
paper take place in the exterior space A.

One simple way to construct a skew-symmetric matrix is to take a vector s =
[s1, . . . , sn]� ∈ R

n and define X by

Xi j := si − s j .

Note that if X 
= 0, then rank(X) = 2 since it can be expressed as se� − es� with
e := [1, . . . , 1]� ∈ R

n . These are in a sense the simplest skew-symmetric matrices—
they have the lowest possible rank among non-zero skew-symmetric matrices (recall
that the rank of a skew-symmetric matrix is necessarily even). In this paper, we will
call these gradient matrices and denote them collectively by MG ,

MG := {X ∈ A | Xi j = si − s j for some s ∈ R
n}.

For T ⊆ (
V
3

)
, we define the set of T -consistent matrices as

MT := {X ∈ A | Xi j + X jk + Xki = 0 for all {i, j, k} ∈ T }. (14)

We can immediately observe every X ∈MG is T -consistent for any T ⊆ (
V
3

)
, i.e.

MG ⊆MT . Conversely, a matrix X that satisfies

Xi j + X jk + Xki = 0 for every triple {i, j, k} ∈
(

V
3

)
.

5 More common notations for A are son(R) (Lie algebra of SO(n)) and ∧2(Rn) (second exterior product
of R

n ).
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is necessarily a gradient matrix, i.e.

MG =M(
V
3

). (15)

Given T ⊆ (
V
3

)
, it is straightforward to verify that both MG and MT are subspaces

of R
n×n . The preceding discussions then imply

MG ⊆MT ⊆ A. (16)

Since these are strict inclusions in general, several complementary subspaces arise
naturally. With respect to the usual inner product 〈X, Y 〉 = tr(X�Y ) =∑

i, j Xi j Yi j ,
we obtain orthogonal complements of MG and MT in A as well as the orthogonal
complement of MG in MT , which we denote by MH :

A =MG ⊕M⊥
G , A =MT ⊕M⊥

T , MT =MG ⊕MH .

Elements of MH will be called harmonic matrices as we will see that they are discrete
analogues of solutions to the Laplace equation (or, more accurately, the Helmholtz
equation). An alternative characterization of MH is

MH =MT ∩M⊥
G ,

which may be viewed as a discrete analogue of the condition of being simul-
taneously curl-free and divergence-free. More generally, this discussion applies
to any weighted inner product 〈X, Y 〉w = ∑

i, j wi j Xi j Yi j . The five subspaces

MG ,MT ,MH ,M⊥
T ,M⊥

G of A play a central role in our techniques. As we shall
see later, the Helmholtz decomposition in Theorem 2 may be viewed as the orthogonal
direct sum decomposition

A =MG ⊕MH ⊕M⊥
T .

4 Combinatorial Hodge theory

In this section we will give a brief introduction to combinatorial Hodge theory, paying
special attention to its relevance in statistical ranking. One may wonder why we do not
rely on our relatively simple matrix view in Sect. 3. The reasons are two fold: firstly,
important geometric insights are lost when the actual motivations behind the matrix
picture are disregarded; and secondly, the matrix approach applies only to the case
of 2-dimensional simplicial complex but combinatorial Hodge theory extends to any
k-dimensional simplicial complex. While so far we did not use any simplicial complex
of dimension higher than two in our study of statistical ranking, it is conceivable that
higher-dimensional simplicial complex could play a role in future studies.
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4.1 Extension of pairwise comparison graph to simplicial complex

Let G = (V, E) be a pairwise comparison graph. To characterize the triangular incon-
sistency or curl, one needs to study the triangles formed by the 3-cliques6, i.e. the set

T (E) :=
{
{i, j, k} ∈ (V

3

) ∣∣ {i, j}, { j, k}, {k, i} ∈ E
}
.

A combinatorial object of the form (V, E, T ) where E ⊆ (
V
2

)
, T ⊆ (

V
3

)
, and

{i, j}, { j, k}, {k, i} ∈ E for all {i, j, k} ∈ T is called a 2-dimensional simplicial
complex. This is a generalization of a graph, which is a 1-dimensional simplicial com-
plex. In particular, given a graph G = (V, E), the 2-dimensional simplicial complex
(V, E, T (E)) is often called the 3-clique complex of G.

More generally, a simplicial complex (V, �) is a vertex set V = {1, . . . , n} together
with a collection � of subsets of V that is closed under inclusion, i.e. if τ ∈ � and
σ ⊂ τ , then σ ∈ �. The elements in � are called simplices. For example, a 0-simplex
is just an element i ∈ V (recall that we do not distinguish between

(V
1

)
and V ), a

1-simplex is a pair {i, j} ∈ (
V
2

)
, a 2-simplex is a triple {i, j, k} ∈ (

V
3

)
, and so on. For

k ≤ n, a k-simplex is a (k + 1)-element set in
(

V
k+1

)
and �k ⊂

(
V
k+1

)
will denote the

set of all k-simplices in �. In the previous paragraph, �0 = V , �1 = E , �2 = T , and
� = V ∪ E ∪ T . In general, given any undirected graph G = (V, E), one obtains a
(k − 1)-dimensional simplicial complex K k

G := (V, �) called the k-clique complex7

of G by ‘filling in’ all its j-cliques for j = 1, . . . , k, or more precisely, by setting
� = { j-cliques of G | j = 1, . . . , k}. When k is maximal K k

G is written KG and
called the clique complex of G.

In this paper, we will mainly concern ourselves with studying the 3-clique complex
K 3

G = (V, E, T (E)) where G is a pairwise comparison graph. Note that we could
also look at the simplicial complex (V, E, Tγ (E)) where

Tγ (E) := {{i, j, k} ∈ T (E)
∣∣ |Xi j + X jk + Xki | ≤ γ

}

where 0 ≤ γ ≤ ∞. For γ = ∞, we get K 3
G but for general γ we get a subcomplex of

K 3
G . We have found this to be a useful multiscale characterization of inconsistencies

but detailed discussion will be left to future work.

4.2 Cochains, coboundary maps, and combinatorial laplacians

We will now introduce some discrete exterior calculus on a simplicial complex where
potential functions (scores or utility), edge flow (pairwise ranking), triangular flow
(triplewise ranking), gradient (global ranking induced by scores), curl (local incon-
sistency) become just special cases of a much more general framework. We will now
also define the notions of combinatorial divergence and combinatorial Laplacians.

6 Recall that a k-clique of G is just a complete subgraph of G with k vertices.
7 Note that a k-clique is a (k − 1)-simplex.
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The 0-dimensional combinatorial Laplacian is the usual graph Laplacian. The case of
greatest interest here is the 1-dimensional combinatorial Laplacian, which we propose
calling the graph Helmholtzian.

Definition 4 Let K be a simplicial complex and recall that �k denotes its set of k-sim-
plices. A k-dimensional cochain is a real-valued function on (k+1)-tuples of vertices
that is alternating on each of the k-simplex and 0 otherwise, i.e. f : V k+1 → R such
that

f (iσ(0), . . . , iσ(k)) = sign(σ ) f (i0, . . . , ik),

for all (i0, . . . , ik) ∈ V k+1 and all σ ∈ Sk+1, the permutation group on k+1 elements,
and that

f (i0, . . . , ik) = 0 if{i0, . . . , ik} /∈ �k .

The set of all k-cochains on K is denoted Ck(K , R).

For simplicity we often write Ck for Ck(K , R). So C0 is the space of potential
functions, C1 the space of edge flows, and C2 the space of triangular flows.

The k-cochain space Ck can be given a choice of inner product. In view of the
weighted l2-minimization for our statistical ranking problem (7), we will define the
following inner product on C1,

〈X, Y 〉w =
∑
{i, j}∈E

wi j Xi j Yi j , (17)

for all edge flows X, Y ∈ C1. In the context of a pairwise comparison graph G, it may
not be immediately clear why this defines an inner product since we have noted after
(8) that W = [wi j ] is only a nonnegative matrix and it is possible that some entries are
0. However observe that by definition wi j = 0 iff no voters have rated both alternatives
i and j and therefore {i, j} 
∈ E by (4) and so any edge flow X will automatically
have Xi j = 0 by (5). Hence we indeed have that 〈X, X〉w = 0 iff X = 0, as required
for an inner product (the other properties are trivial to check).

The operators grad and curl are special instances of coboundary maps:

Definition 5 The kth coboundary operator δk : Ck(K , R) → Ck+1(K , R) is the
linear map that takes a k-cochain f ∈ Ck to a (k + 1)-cochain δk f ∈ Ck+1 defined
by

(δk f )(i0, i1, . . . , ik+1) :=
k+1∑
j=0

(−1) j f (i0, . . . , i j−1, i j+1, . . . , ik+1).

Note that i j is omitted from the j th summand, i.e. coboundary maps compute an
alternating difference with one input left out. So δ0 = grad, i.e. (δ0s)(i, j) = s j − si ,
and δ1 = curl, i.e. (δ1 X)(i, j, k) = Xi j + X jk + Xki .

123



222 X. Jiang et al.

Given a choice of an inner product 〈·, ·〉k on Ck , we may define the adjoint operator
of the coboundary map, δ∗k : Ck+1 → Ck in the usual manner, i.e. 〈δk fk, gk+1〉k+1 =
〈 fk, δ

∗
k gk+1〉k .

Definition 6 The combinatorial divergence operator div : C1(K , R)→ C0(K , R)

is the adjoint of δ0 = grad, i.e.

div := −δ∗0 . (18)

Divergence will appear in the minimum norm solution to (7) and can be used to
characterize M⊥

G . As usual, we will drop the adjective ‘combinatorial’ when there is
no cause for confusion.

For statistical ranking, it suffices to consider k = 0, 1, 2. Let G be a pairwise
comparison graph and KG its clique complex.8 The cochain maps,

C0(KG, R)
δ0−→ C1(KG, R)

δ1−→ C2(KG, R) (19)

and their adjoints,

C0(KG, R)
δ∗0←− C1(KG, R)

δ∗1←− C2(KG, R), (20)

have the following ranking theoretic interpretations: C0, C1, C2 represent spaces of
score functions, pairwise rankings, triplewise rankings, and

scores
grad−−→ pairwise

curl−−→ triplewise,

scores
− div=grad∗←−−−−−−− pairwise

curl∗←−− triplewise.

Recall that combinatorial gradient, curl, and divergence are defined by

(grad s)(i, j) = (δ0s)(i, j) = s j − si ,

(curl X)(i, j, k) = (δ1 X)(i, j, k) = Xi j + X jk + Xki ,

(div X)(i) = −(δ∗0 X)(i) =
∑

j s.t. {i, j}∈E

wi j Xi j

with respect to the inner product 〈X, Y 〉w =∑
{i, j}∈E wi j Xi j Yi j on C1.

As an aside, it is perhaps worth pointing out that there is no special name for the
adjoint of curl coming from physics because in 3-space, C1 may be identified with C2

via a property called Hodge duality and in which case curl is a self-adjoint operator,
i.e. curl∗ = curl. This will not be true in our case.

8 It does not matter whether we consider KG or K 3
G or indeed any K k

G where k ≥ 3; the higher-dimensional
k-simplices where k ≥ 3 do not play a role in the coboundary maps δ0, δ1, δ2.
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If we represent functions on vertices by n-vectors, edge flows by n× n skew-sym-
metric matrices, and triangular flows by n × n × n skew-symmetric hypermatrices,
i.e.

C0 = R
n,

C1 = {[Xi j ] ∈ R
n×n | Xi j = −X ji } = A,

C2 = {[Φi jk] ∈ R
n×n×n | Φi jk = Φ jki = Φki j = −Φ j ik = −Φik j = −Φk ji },

then in the language of linear algebra introduced in Sect. 3,

im(δ0) = im(grad) =MG , ker(δ1) = ker(curl) =MT ,

ker(δ∗0) = ker(div) =M⊥
G , im(δ∗1) = im(curl∗) =M⊥

T ,

where T = T (E).
Coboundary maps have the following important property.

Lemma 1 (Closedness) δk+1 ◦ δk = 0.

For k = 0, this and its adjoint are well-known identities in vector calculus,

curl ◦ grad = 0, div ◦ curl∗ = 0. (21)

Ranking theoretically, the first identity simply says that a global ranking must be
consistent.

We will now define combinatorial Laplacians (also known as Hodge Laplacians),
higher-dimensional analogues of the graph Laplacian.

Definition 7 Let K be a simplicial complex. The k-dimensional combinatorial La-
placian is the operator �k : Ck(K , R)→ Ck(K , R) defined by

�k = δ∗k ◦ δk + δk−1 ◦ δ∗k−1. (22)

In particular,

�0 = δ∗0 ◦ δ0 = − div ◦ grad

is a discrete analogue of the scalar Laplacian or Laplace operator while

�1 = δ∗1 ◦ δ1 + δ0 ◦ δ∗0 = curl∗ ◦ curl− grad ◦ div

is a discrete analogue of the vector Laplacian or Helmholtz operator. In the context of
graph theory, if K = KG , �0 is called the graph Laplacian [11] while �1 we will call
the graph Helmholtzian.

The combinatorial Laplacian has some well-known, important properties.

Lemma 2 �k is a positive semidefinite operator. Furthermore, the dimension of
ker(�k) is equal to kth Betti number of K .
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We will call a cochain f ∈ ker(�k) harmonic since they are solutions to higher-
dimensional analogue of the Laplace equation

�k f = 0.

Strictly speaking, the Laplace equation refers to �0 f = 0. The equation �1 X = 0
is really the Helmholtz equation. But nonetheless, we will still call an edge flow
X ∈ ker(�1) a harmonic flow.

4.3 Hodge decomposition theorem and HodgeRank

We now state the main theorem in combinatorial Hodge theory.

Theorem 1 (Hodge Decomposition Theorem) Ck(K , R) admits an orthogonal
decomposition

Ck(K , R) = im(δk−1)⊕ ker(�k)⊕ im(δ∗k ).

Furthermore,

ker(�k) = ker(δk) ∩ ker(δ∗k−1).

An elementary proof targeted at a computer science readership may be found in [19].
For completeness we include a proof here.

Proof We will use Lemma 1. First, Ck = im(δk−1) ⊕ ker(δ∗k−1). Since δkδk−1 = 0,
taking adjoint yields δ∗k−1δ

∗
k = 0, which implies that im(δ∗k ) ⊆ ker(δ∗k−1). There-

fore ker(δ∗k−1) = [im(δ∗k ) ⊕ ker(δk)] ∩ ker(δ∗k−1) = [im(δ∗k ) ∩ ker(δ∗k−1)] ⊕[ker(δk) ∩ ker(δ∗k−1)] = im(δ∗k ) ⊕ [ker(δk) ∩ ker(δ∗k−1)]. It remains to show that
ker(δk)∩ker(δ∗k−1) = ker(�k) = ker(δk−1δ

∗
k−1+δ∗k δk). Clearly ker(δk)∩ker(δ∗k−1) ⊆

ker(�k). For any X = δ∗k Φ ∈ im(δ∗k ) where 0 
= Φ ∈ Ck+1, Lemma 1 again implies
δk−1δ

∗
k−1 X = δk−1δ

∗
k−1δ

∗
k Φ = 0, but δ∗k δk X = δ∗k δkδ

∗
k Φ 
= 0, which implies that

�k X 
= 0. Similarly for X ∈ im(δk−1). Hence ker(�k) = ker(δk) ∩ ker(δ∗k−1). ��
While Hodge decomposition holds in general for any simplicial complex of any

dimension k, the case k = 1 is often called the Helmholtz decomposition theorem.9

We will state it here for the special case of a clique complex.

Theorem 2 (Helmholtz Decomposition Theorem) Let G = (V, E) be an undirected,
unweighted graph and KG be its clique complex. The space of edge flows on G, i.e.
C1(KG, R), admits an orthogonal decomposition

C1(KG, R) = im(δ0)⊕ ker(�1)⊕ im(δ∗1)

= im(grad)⊕ ker(�1)⊕ im(curl∗). (23)

9 On a simply connected manifold, the continuous version of the Helmholtz decomposition theorem is just
the fundamental theorem of vector calculus.
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Fig. 2 Hodge/Helmholtz decomposition of pairwise rankings

Furthermore,

ker(�1) = ker(δ1) ∩ ker(δ∗0) = ker(curl) ∩ ker(div). (24)

The clique complex KG above may be substituted with any K k
G with k ≥ 3 (see

Footnote 8). The Eq. 24 says that an edge flow is harmonic iff it is both curl-free and
divergence-free. Figure 2 illustrates (23).

To understand the significance of this theorem, we need to discuss the ranking the-
oretic interpretations of each subspace in the theorem. These interpretations constitute
a method for analyzing ranking data and will collectively be called HodgeRank.

1. im(δ0) = im(grad) denotes the subspace of pairwise rankings that are the gradi-
ent flows of score functions. Thus this subspace comprises the globally consistent
or acyclic pairwise rankings. Given any pairwise ranking from this subspace, we
may determine a score function on the alternatives that is unique up to an additive
constant10 and then we may rank all alternatives globally in terms of their scores.

2. ker(δ∗0) = ker(div) denotes the subspace of divergence-free pairwise rankings,
whose total in-flow equals total out-flow for each alternative i ∈ V . They may be
regarded as cyclic rankings, i.e. rankings of the form i � j � k � · · · � i and
are clearly inconsistent. Since ker(div∗) = im(grad)⊥, cyclic rankings have zero
projection on global rankings.

3. ker(δ1) = ker(curl) denotes the subspace of curl-free pairwise rankings with
zero flow-sum along any triangle in KG . These correspond to locally consis-
tent (i.e. triangularly consistent) pairwise rankings. By the Closedness Lemma
curl ◦ grad = 0 and so im(grad) ⊆ ker(curl). In general, the globally consis-
tent pairwise rankings induced by gradient flows of score functions only account
for a subset of locally consistent rankings. The remaining ones are the locally

10 Note that ker(δ0) = ker(grad) is the set of constant functions on V and so grad(s) = grad(s+constant).
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consistent rankings that are not globally consistent and they are precisely the
harmonic rankings discussed below.

4. ker(�1) = ker(curl) ∩ ker(div) denotes the subspace of harmonic pairwise
rankings, or just harmonic rankings in short. It is the space of solutions to the
Helmholtz equation. Harmonic rankings are exactly those pairwise rankings that
are both curl-free and divergence-free. These are locally consistent with zero curl
on every triangle in T (E) but not globally consistent. In other words, while there
are no inconsistencies due to small loops of length 3, i.e. i � j � k � i , there are
inconsistencies along larger loops of lengths > 3, i.e. a � b � c � · · · � z � a.
So these are also cyclic rankings. Rank aggregation on ker(�1) depends on edge
paths traversed in the simplicial complex; along homotopy equivalent paths one
obtains consistent rankings. Figure 1 has an example of harmonic ranking.

5. im(δ∗1) = im(curl∗) denotes the subspace of locally cyclic pairwise rankings
that have non-zero curls along triangles. By the Closedness Lemma, im(curl∗) ⊆
ker(div) and so this subspace is in general a proper subspace of the divergence-
free rankings; the orthogonal complement of im(curl∗) in ker(div) is precisely the
space of harmonic rankings ker(�1).

5 Analysis of HodgeRank

We now state two immediate implications of the Helmholtz decomposition theorem
when applied to statistical ranking. The first implication is that HodgeRank gives
an interpretation of the solution and residual of the optimization problem (7); these
are respectively the l2-projection on gradient flows and divergence-free flows. In the
context of statistical ranking and in the l2-sense, the solution to (7) gives the near-
est globally consistent pairwise ranking to the data while the residual gives the sum
total of all inconsistent components (both local and harmonic) in the data. The sec-
ond implication is the condition that local consistency guarantees global consistency
whenever there is no harmonic component in the data (which happens iff the clique
complex of the pairwise comparison graph is ‘loop-free’).

5.1 Structure theorem for global ranking and the residual of inconsistency

In order to cast our optimization problem (7) in the Hodge theoretic framework, we
need to specify a choice of inner products on C0, C1, C2. As before, the inner product
on the space of edge flows (pairwise rankings) C1 will be a weighted Euclidean inner
product:

〈X, Y 〉w =
∑
{i, j}∈E

wi j Xi j Yi j

for X, Y ∈ C1. We use unweighted Euclidean inner products on C0 and C2,

〈r, s〉 =
n∑

i=1

ri si , 〈�,Φ〉 =
∑

{i, j,k}∈T (E)

�i jkΦi jk
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for r, s ∈ C0 and �,Φ ∈ C2. This is mainly to keep our notations uncluttered. Other
choices could be made (e.g. inner products on C0 and C2 could have been weighted)
with corresponding straightforward modification of (7) but this would not change the
essential nature of our methods.

The optimization problem (7) is then equivalent to an l2-projection of an edge flow
representing a pairwise ranking onto im(grad),

min
s∈C0
‖δ0s − Ȳ‖2,w = min

s∈C0
‖ grad s − Ȳ‖2,w.

The Helmholtz decomposition theorem then leads to the following result about the
structure of solutions and residuals of (7). In Theorem 3 below, we assume that the
pairwise ranking data Ȳ has been estimated from one of the methods in Sect. 2.3.
The least squares solution s will be a score function that induces grad s, the l2-near-
est global ranking to Ȳ . Since s is only unique up to a constant (see Footnote 10),
we determine a unique minimum norm solution s∗ for the sake of well-posedness;
but nevertheless any s will yield the same global ordering of alternatives. The least
squares residual R∗ represents the inconsistent component of the ranking data Ȳ . The
magnitude of R∗ is a ‘certificate of reliability’ for s; since if this is small, then the
globally consistent component grad s accounts for most of the variation in Ȳ and we
may conclude that s gives a reasonably reliable ranking of the alternatives. But even
when the magnitude of R∗ is large, we will see that it may be further resolved into a
global and a local component that determine when a comparison of alternatives with
respect to s is valid.

Theorem 3 (i) Solutions of (7) satisfy the following normal equation

�0s = − div Ȳ , (25)

and thus the minimum norm solution is

s∗ = −�
†
0 div Ȳ (26)

where † indicates Moore-Penrose inverse. The divergence in (26) is

(div Ȳ )(i) =
∑

j s.t. {i, j}∈E

wi j Ȳi j ,

and the matrix representing the graph Laplacian is given by

[�0]i j =
⎧⎨
⎩

∑
i wi i if j = i,
−wi j if j is such that {i, j} ∈ E,

0 otherwise.
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(ii) The residual R∗ = Ȳ − δ0s∗ is divergence-free, i.e. div R∗ = 0. Moreover, it
has a further orthogonal decomposition

R∗ = projim(curl∗) Ȳ + projker(�1)
Ȳ , (27)

where projim(curl∗) Ȳ is a locally cyclic ranking accounting for local inconsis-
tencies and projker(�1)

Ȳ is a harmonic ranking accounting for global inconsis-
tencies. In particular, the projections are given by

projim(curl∗) = curl† curl and projker(�1)
= I −�+1 �1. (28)

Proof The normal equation for mins∈C0 ‖δ0s − Ȳ‖22,w is

δ∗0δ0s = δ∗0 Ȳ .

(25, 26), and div R∗ = 0 are obvious upon substituting �0 = δ∗0δ0 and div = −δ∗0 .
The expressions for divergence and graph Laplacian in (i) follow from their respective
definitions. The Helmholtz decomposition theorem implies

ker(�1)⊕ im(curl∗) = im(grad)⊥.

Obviously projim(grad)⊥ grad s∗ = 0. Since R∗ = Ȳ − grad s∗ is a least squares resid-

ual, we must have projim(grad) R∗ = projim(grad) Ȳ − grad s∗ = 0. These observations
yield (27), as

R∗ = projim(grad) R∗ + projim(grad)⊥ R∗ = 0+ projker(�1)⊕im(curl∗) Ȳ .

The expressions for the projections in (28) are standard. ��
In the special case when the pairwise ranking matrix G is a complete graph and we

have an unweighted Euclidean inner product on C1, the minimum norm solution s∗
in (26) satisfies

∑
i s∗i = 0 and is given by

s∗i = −
1

n
div(Ȳ )(i) = −1

n

∑
j

Ȳi j . (29)

In Sect. 6, we shall see that this is the well-known Borda count in social choice the-
ory, a measure that is also widely used in psychology and statistics [13,28,33]. Since
G is a complete graph only when the ranking data is complete, i.e. every voter has
rated every alternative, this is an unrealistic scenario for the type of modern ranking
data discussed in Sect. 1. Among other things, HodgeRank generalizes Borda count
to scenarios where the ranking data is incomplete or even highly incomplete.

In (ii) the locally cyclic ranking component is obtained by solving

min
Φ∈C2

‖ curl∗Φ − R∗‖2,w = min
Φ∈C2

‖ curl∗Φ − Ȳ‖2,w.
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The above equality implies that there is no need to first solve for R∗ before we may
obtain Φ; one could get it directly from the pairwise ranking data Ȳ . Note that the
solution is only determined up to an additive term of the form grad s since by virtue
of (21),

curl(Φ + grad s) = curl Φ. (30)

For the sake of well-posedness, we seek the unique minimum norm solution

Φ∗ = (δ1 ◦ δ∗1)†δ1Ȳ = (curl ◦ curl∗)† curl Ȳ

and the required component is given by projim(curl∗) Ȳ = curl∗Φ∗. The reader may
have noted a parallel between the two problems

min
s∈C0
‖grad s − Ȳ‖2,w and min

Φ∈C2
‖curl∗Φ − Ȳ‖2,w.

Indeed in many contexts, s is called the scalar potential while Φ is called the vector
potential. As seen earlier in Definition 1, an edge flow of the form grad s for some
s ∈ C0 is called a gradient flow; in analogy, we will call an edge flow of the form
curl∗Φ for some Φ ∈ C2 a curl flow.

We note that the l2-residual R∗, being divergence-free, is a cyclic ranking. Much
like (30), the divergence-free condition is satisfied by a whole family of edge flows
that differ from R∗ only by a term of the form curl∗Φ since

div(R∗ + curl∗Φ) = div R∗

because of (21). The subset of C1 given by

{R∗ + curl∗Φ | Φ ∈ C2}

is called the homology class of R∗. The harmonic ranking projker(�1)
Ȳ is just one

element in this class.11 In general, it will be dense in the sense that it will be nonzero
on almost every edge in E . This is because in addition to the divergence-free condition,
the harmonic ranking must also satisfy the curl-free condition by virtue of (24). So
if parsimony or sparsity is the objective, e.g. if one wants to identify a small number
of conflicting comparisons that give rise to the inconsistencies in the ranking data,
then the harmonic ranking does not offer much information in this regard. To better
understand ranking inconsistencies via the structure of R∗, it is often helpful to look
for elements in the same homology class with the sparsest support, i.e.

min
Φ∈C2
‖curl∗Φ − R∗‖0 = min

Φ∈C2
‖curl∗Φ − projker(�1)

Ȳ‖0.

11 Two elements of the same homology class are called homologous.
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The widely used convex relaxation replacing the l0-‘norm’ by the l1-norm may be
employed [40], i.e.

min
Φ∈C2
‖curl∗Φ − R∗‖1 := min

Φ∈C2

∑
i, j

|(curl∗Φ)i j − R∗i j |.

A solution Φ̃ of such an l1-minimization problem is expected to give a sparse element
R∗ − curl∗ Φ̃. The bottom line here is that we want to find the shortest cycles that
represent the global inconsistencies and perhaps remove the corresponding edges in
the pairwise comparison graph, in view of what we will discuss next in Sect. 5.2.
One plausible strategy to get a globally consistent ranking is to remove a number
of problematic ‘conflicting’ comparisons from the pairwise comparison graph. Since
it is only reasonable to remove as few edges as possible, this translates to finding a
homology class with the sparsest support. This is similar to the minimum feedback
arc set approach discussed in Sect. 6.2.

We will end the discussion of this section with a note on computational costs of
HodgeRank. Solving for a global ranking s∗ in (26) only requires the solution of an
n×n least squares problem, which comes with a modest cost of O(n3) flops (n = |V |).
As we note later in Sect. 7.3, for web ranking analysis such a cost is no more than
computing the PageRank. On the other hand, the analysis of inconsistency is generally
harder. For example, evaluating curls requires |T | flops and this is

(n
3
) ∼ O(n3) in the

worst case. Since an actual computation of Φ∗ involves solving a least squares prob-
lem of size |T | × |T |, the computation cost incurred is of order O(n9). Nevertheless,
any sparsity in the data (when |T | � n3) may be exploited by choosing the right least
squares solver. For example, one may use the general sparse least squares solver lsqr
[35] or the new minres-qlp [9,10] that works specifically for symmetric matrices. We
will leave discussions of actual computations and more extensive numerical experi-
ments to a future article. It suffices to note here that it is in general harder to isolate
the harmonic component of ranking data than the globally consistent component.

5.2 Local consistency versus global consistency

In this section, we discuss a useful result, that local consistency implies global con-
sistency whenever the harmonic component is absent from the ranking data. Whether
a harmonic component exists is dependent on the topology of the clique complex K 3

G .
We will invoke the recent work of Kahle [24] on topological properties of random
graphs to argue that harmonic components are exceedingly unlikely to occur.

By Lemma 2, the dimension of ker(�1) is equal to the first Betti number β1(K ) of
the underlying simplicial complex K . Since ker(�1) = 0 if β1(K ) = 0, the harmonic
component of any edge flow on K is automatically absent when β1(K ) = 0 (roughly
speaking, β1(K ) = 0 means that K does not have any 1-dimensional holes). This
leads to the following result.

Theorem 4 Let K 3
G = (V, E, T (E)) be a 3-clique complex of a pairwise comparison

graph G = (V, E). If K 3
G does not contain any 1-loops, i.e. β1(K 3

G) = 0, then every
locally consistent pairwise ranking is also globally consistent. In other words, if the
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edge flow X ∈ C1(K 3
G , R) is curl-free, i.e.

curl(X)(i, j, k) = 0

for all {i, j, k} ∈ T (E), then it is a gradient flow, i.e. there exists s ∈ C0(KG , R) such
that

X = grad s.

Proof This follows from Helmholtz decomposition since dim(ker �1) = β1(K 3
G) = 0

and so any X that is curl-free is automatically in im(grad). ��
When G is a complete graph, then we always have β1(KG) = β1(K 3

G) = 0 and
this justifies the discussion after Definition 3 about the equivalence of local and global
consistencies for complete pairwise comparison graphs. In general, G will be incom-
plete due to missing data (not all voters have rated all alternatives) but as long as
K 3

G is loop-free, such a claim still holds. In finance, this theorem translates into the
well-known result that “triangular arbitrage-free implies arbitrage-free.” The theorem
enables us to infer global consistency from a local condition—whether the ranking
data is curl-free. We note that being curl-free is a strong condition. If we instead have
“triangular transitivity” in the ordinal sense, i.e. a � b � c implies a � c, then there
is no result analogous to Theorem 4.

At least for Erdös-Rényi random graphs, the Betti number β1 could only be non-
zero when the edges are neither too sparse nor too dense. The following result by Kahle
[24] quantifies this statement. He showed that β1 undergoes two phase transitions from
zero to nonzero and back to zero as the density of edges grows.

Theorem 5 (Kahle 2006) For an Erdös-Rényi random graph G(n, p) on n vertices
where the edges are independently generated with probability p, its clique complex
KG almost always has β1(KG) = 0, except when

1

n2 � p � 1

n
. (31)

Without getting into a discussion as to whether an Erdös-Rényi random graph is a
good model for pairwise comparison graphs of real-world ranking data, we note that
the Netflix pairwise comparison graph has a high probability of having β1(KG) = 0
if Kahle’s result applies. Although the original customer-product rating matrix of the
Netflix prize dataset is highly incomplete (more than 99% missing values), its pairwise
comparison graph is very dense (less than 0.22% missing edges). So p (probability of
an edge) and n (number of vertices) are both large and (31) is not satisfied.

6 Connections to social choice theory

Social choice theory is almost undoubtedly the discipline most closely associated with
the study of ranking, having a long history dating back to Condorcet’s famous treatise
in 1785 [15] and a large body of work that led to at least two Nobel prizes [3,39].
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The famous impossibility theorems of Arrow [2] and Sen [38] in social choice
theory formalized the inherent difficulty of achieving a global ranking of alternatives
by aggregating over the voters. However it is still possible to perform an approximate
rank aggregation in reasonable, systematic ways. Among the various proposed meth-
ods, the best known ones are those by Condorcet [15], Borda [14], and Kemeny [25].
The Kemeny approach is often regarded as the best approximate rank aggregation
method under some assumptions [43,44]. It is however NP-hard to compute and its
sole reliance on ordinal information may be unnatural for score-based cardinal data.

We have described earlier how the minimization of (7) over the gradient flow model
class

MG = {X ∈ C1 | Xi j = s j − si , s : V → R}

leads to a Hodge theoretic generalization of Borda count but the minimization of (7)
over the Kemeny model class

MK = {X ∈ C1 | Xi j = sign(s j − si ), s : V → R}

leads to Kemeny optimization. We will elaborate on these in Sect. 6.1.
The following are some desirable properties of ranking data that have been widely

studied, used, and assumed in social choice theory. A ranking problem is called com-
plete if each voter in Λ gives a total ordering or permutation of all alternatives in V ;
this implies that wα

i j > 0 for all α ∈ Λ and all distinct i, j ∈ V , in the terminology of
Sect. 2. It is balanced if the pairwise comparison graph G = (V, E) is k-regular with
equal weights wi j = c for all {i, j} ∈ E . A complete and balanced ranking induces
a complete graph with equal weights on all edges. Moreover, it is binary if every
pairwise comparison is allowed only two values, say, ±1 without loss of generality.
So Y α

i j = 1 if voter α prefers alternative j to alternative i , and Y α
i j = −1 otherwise.

Ties are disallowed to keep the discussion simple.
Classical social choice theory often assumes complete, balanced, and binary rank-

ings. However, these are all unrealistic assumptions for modern data coming from
internet and e-commerce applications. Take the Netflix dataset for illustration, a typi-
cal user α of Netflix would have rated at most a very small fraction of the entire Netflix
inventory. Indeed, as we have mentioned in Sect. 2.2.1, the viewer-movie rating matrix
has 99% missing values. Moreover, while blockbuster movies would receive a dispro-
portionately large number of ratings, since just about every viewer has watched them,
the more obscure or special interest movies would receive very few ratings. In other
words, the Netflix dataset is highly incomplete and highly imbalanced. Furthermore,
the Netflix ratings are given in terms of scores, i.e. 1 through 5 stars. While it is pos-
sible to ignore the cardinal nature of the dataset and just use its ordinal information
to construct a binary pairwise ranking, we would be losing valuable information—for
example, a 5-star versus 1-star comparison is indistinguishable from a 3-star versus
2-star comparison when one only takes ordinal information into account.

Therefore, one is ill-advised to apply methods from classical social choice theory
to modern ranking data directly. We will see next that our Hodge theoretic extension
of Borda count adapts to these new features in modern datasets, i.e. incomplete, imbal-
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anced, cardinal data, but restricts to the usual Borda count for data that is complete,
balanced, and ordinal/binary.

6.1 Kemeny optimization and Borda count

The basic idea of Kemeny’s rule [25,26] is to minimize the number of pairwise mis-
matches from a given ordering of alternatives to a voting profile, i.e. the collection of
total orders on the alternatives by each voter. The minimizers are called Kemeny optima
and are often regarded as the most reasonable candidates for a global ranking of the
alternatives. To be precise, we define the binary pairwise ranking associated with a per-
mutation σ ∈ Sn (the permutation group on n elements) to be Y σ

i j = sign(σ (i)−σ( j)).
Given two total orders or permutations on the n alternatives, σ, τ ∈ Sn , the Kemeny
distance (also known as Kemeny-Snell or Kendall τ distance) is defined as

dK (σ, τ ) := 1

2

∑
i< j

|Y σ
i j − Y τ

i j | =
1

4

∑
i, j

|Y σ
i j − Y τ

i j |,

i.e. the number of pairwise mismatches between σ and τ . Given a voting profile as a
set of permutations on V = {1, . . . , n} by m voters, {τi ∈ Sn | i = 1, . . . , m}, the
following combinatorial minimization problem

min
σ∈Sn

m∑
i=1

dK (σ, τi ) (32)

is called Kemeny optimization and is known to be NP-hard [17] with respect to n when
m ≥ 4. For binary-valued rankings with Y α

i j ∈ {±1},

min
X∈MK

∑
α,i, j

wα
i j (Xi j − Y α

i j )
2, (33)

counts up to a constant the number of pairwise mismatches from a total order. Hence
for a complete, balanced, and binary-valued ranking problem, our minimization prob-
lem (7) becomes Kemeny optimization if we replace the subspace MG by the discrete
subset MK .

Another well-known method for rank aggregation is the Borda count [14], which
assigns a voter’s top i th alternative a position-based score of n− i ; the global ranking
on V is then derived from the sum of its scores over all voters. This is equivalent to
saying that the global ranking of the i th alternative is derived from the score

sB(i) = −
m,n∑

α,k=1

Y α
ik, (34)

i.e. the alternative that has the most pairwise comparisons in favor of it from all voters
will be ranked first, and so on. As we have found in (29), the minimum norm solution
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of the l2-projection onto gradient flows is given by

s∗(i) = −1

n

∑
k

Ȳik = −c
m,n∑

α,k=1

Y α
ik,

where c is a positive constant. Hence for a complete, balanced, and binary ranking
problem, HodgeRank yields the Borda count (up to a positive multiplicative constant
that has no effect on the ordering of alternatives by scores).

6.2 Comparative studies

The following theorem gives three equivalent characterizations of (33) when Y α
i j ∈{±1}. Note that we do not assume complete nor balanced data.

Theorem 6 Suppose that Y α
i j ∈ {±1}. The following optimization problems are all

equivalent:

(i) The weighted least squares problem,

min
X∈MK

∑
α,i, j

wα
i j (Xi j − Y α

i j )
2,

where MK = {X ∈ A | Xi j = sign(s j − si ), s : V → R}.
(ii) The linear programming problem,

max
X∈K1

〈X, Ȳ 〉 = max
X∈K1

∑
{i, j}∈E

wi j Xi j Ȳi j , (35)

where K1 is the set

⎧⎨
⎩

∑
σ∈Sn

μσ Pσ
∣∣∣ ∑

σ

μσ = 1, μσ ≥ 0, Pσ
i j = sign(σ ( j)− σ(i))

⎫⎬
⎭.

(iii) The weighted l1-minimization problem,

min
X∈K2

‖X − Ȳ‖1,w = min
X∈K2

∑
{i, j}∈E

wi j |Xi j − Ȳi j |, (36)

where K2 is the set

{X ∈ A | (s j − si )Xi j ≥ 0 for some s : V → R and {i, j} ∈ E}.

(iv) The minimum feedback arc set of the weighted directed graph GW◦Ȳ =
(V, E, W ◦ Ȳ ), whose vertex set is V , directed edge (i, j) ∈ E ⊆ V × V
iff Ȳi j > 0 with weight wi j Ȳi j .
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Proof Assuming (i). Since Xi j ∈ {±1}, the problem in (i) is equivalent to

max
X∈MK

∑
{i, j}∈E

wi j Xi j Ȳi j . (37)

Since MK is a discrete set containing n! points, a linear programming problem over
MK is equivalent to searching over its convex hull, i.e. K1, which gives (ii).

(iv) can also be derived from (37). Consider a weighted directed graph GW◦Ȳ where
an edge (i, j) ∈ E iff Ȳi j > 0, and in which case has weight |wi j Ȳi j |. (37) is equivalent
to finding a directed acyclic graph by reverting a set of edge directions whose weight
sum is minimized. This is exactly the minimum feedback arc set problem.

Finally, we show that (iii) is also equivalent to the minimum feedback arc set prob-
lem. For any X ∈ K2, the transitive region, there is an associated weighted directed
acyclic graph GW◦X where an edge (i, j) ∈ E iff Xi j > 0, and in which case has
weight |wi j Xi j |. Note that a minimizer of (36) has either X∗i j = −X∗j i = Ȳi j or
X∗i j = −X∗j i = 0 on an edge {i, j} ∈ E , which is equivalent to the problem of finding
a directed acyclic graph by deleting a set of edges from GW◦Ȳ such that the sum of their
weights is minimized. Again, this is exactly the minimum feedback arc set problem.

��

The set K1 is the convex hull of skew-symmetric permutation matrices Pσ as defined
in [44]. The set K2 is called the transitive pairwise region in [36], comprising n! cones
corresponding to each of the n! permutations on V .

It is known that the minimum feedback arc set problem in (iv) is NP-hard, and
therefore, so are the other three. Moreover, (iii) provides some geometric insights
when viewed alongside (7), the l2-projection onto gradient flows MG = {X ∈ A |
Xi j = s j − si , s : V → R}, which we have seen to be a Hodge theoretic extension
of Borda count. We will illustrate their differences and similarities pictorially via an
example from [36].

Consider the simplest case of three-item comparison with V = {i, j, k}. For sim-
plicity, we will assume that wi j = w jk = wki = 1 and Ȳi j , Ȳ jk, Ȳki ∈ [−1, 1]. Fig-
ure 3 shows the unit cube in R

3. We will label the coordinates in R
3 as [Xi j , X jk, Xki ]

(instead of the usual [x, y, z]). The shaded plane corresponds to the set where Xi j +
X jk + Xki = 0 in the unit cube. Note that this set is equal to the model class MG

because of (15). On the other hand, the transitive pairwise region K2 consists of the six
orthants within the cube with vertices {±1,±, 1,±1}−{[1, 1, 1], [−1,−1,−1]}. The
HodgeRank optimization (7) is the l2-projection onto the plane Xi j + X jk + Xki = 0,
while by (iii), Kemeny optimization (33) is the l1-projection onto the aforementioned
six orthants representing the transitive pairwise region K2. The shaded plane in Fig. 3
is a special case of a permutahedron or permutohedron. We refer the reader to [32,45]
for excellent discussions of these. In particular, Zhang has shown [45] that the projec-
tion depicted in Fig. 3 for three-item comparison can be generalized to a comparison
of an arbitrary number of items.

In the setting of social choice theory, the following theorem [36] connects order
relations between Kemeny optimization and Borda count.
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X(k,i)

X(j,k)

)1,1,1−()1,1−,1−(

(−1,1,−1)

(1,1,1)

O

X(i,j) (−1,−1,−1)

(1,−1,1)

(1,−1,−1) (1,1,−1)

Fig. 3 The shaded region is the subspace Xi j + X jk + Xki = 0. The transitive region consists of six
orthants whose corresponding vertices belong to {±1,±, 1,±1} − {[1, 1, 1], [−1,−1,−1]}. The Borda
count is the l2-projection onto the shaded plane while the Kemeny optimization is the l1-projection onto
the transitive region

Theorem 7 (Saari-Merlin 2000) The Kemeny winner (most preferred) is always
strictly above the Kemeny loser (least preferred) under the Borda count; similarly
the Borda winner is always strictly above the Borda loser under the Kemeny rule.
Aside from these constraints, the two methods may generate arbitrarily different total
orders.

The Kemeny rule has several desirable properties in social choice theory which the
Borda count lacks [44]. The Kemeny rule satisfies the Condorcet rule, in the sense
that if an alternative in V wins all pairwise comparisons against other alternatives
in V , then it must be the overall winner. A Condorcet winner is any alternative i
such that

∑
j sign(

∑
α Y α

i j ) = n. Note that the Condorcet winner may not exist in
general but Kemeny or Borda winners always exist. However, if a Condorcet winner
exists, then it must be the Kemeny winner. On the other hand, Borda count can only
ensure that the Condorcet winner is ranked strictly above the Condorcet loser (least
preferred). Another major advantage of the Kemeny rule is its consistency in global
rankings under the elimination of alternatives in V . The Borda count and many other
position-based rules fail to meet this condition. In fact, the Kemeny rule is the unique
rule [44] that meets all of following: (1) satisfies the Condorcet rule, (2) consistency
under elimination, and (3) a natural property called neutral (which we will not discuss
here).

Despite the many important features that the Kemeny rule has, its high compu-
tational cost (NP-hard) makes simpler rules like Borda count attractive in practice,
especially when there is large number of alternatives to be ranked. Moreover, in cardi-
nal rankings where it is desirable to preserve the magnitude of score differences [12]
and not just the order relation, using the Hodge theoretic variant of Borda count with
model class MG becomes more relevant than Kemeny optimization with model class
MK .
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7 Experimental studies

We present three examples of analysis of real data using HodgeRank with the hope
that they would illustrate the basic ideas.

The first example ranks movies from the Netflix dataset. We show that (1) Hodge-
Rank reduces temporal drift bias, and (2) the triangular curls provide a metric for
characterizing inconsistencies in the ranking data. The second example illustrates the
use of HodgeRank for finding a universal equivalent or price function (i.e. global
ranking) in a currency exchange market, with data from Yahoo! Finance. The third
example describes how the global ranking component in HodgeRank may be used to
approximate PageRank via reversible Markov chains, with data from Webometrics.

7.1 Movie ranking on a subset of netflix data

The Netflix prize dataset12 contains about 17, 000 movies rated by 480, 000 customers
over 74 months from November 1999 to December 2005. Each customer rated 209
movies on average and around 99% of the ratings are absent from the customer-prod-
uct matrix. We do not seek to address the Netflix prize problem of ratings prediction
here. Instead we take advantage of this rare publicly available dataset and use it to test
the rank aggregation capabilities of our method. We would like to aggregate viewers’
ratings into a global ranking on movies, and to measure the reliability of such a global
ranking. Note that such rank aggregation could be personalized if one also attempts to
identify groups of viewers sharing similar tastes (say, via the suggestion in Footnote 2).
This could then be used for rating prediction if desired.

For reasons that we will soon explain, we restrict our selections to movies that
received ratings on all of the 74 months. There are not many such movies—only 25
in all. Several of these have monthly average scores that show substantial upward or
downward drifts. In Fig. 4, we show the temporal variations in scores of six of these
(numerical indices in the Netflix dataset are given in parentheses): Dune (17064),
Interview with the Vampire (8079), October Sky (12473), Shake-
speare in Love (17764), The Waterboy (14660), and Witness (15057).
Such temporal variations make it dubious to rank movies by simply taking average
score over all users, as ratings over different time periods may not be comparable under
the same scale. It is perhaps worth noting that understanding the temporal dynamics
in the Netflix dataset has been a key factor in the approach of Bell and Koren [6]. We
will see below that the use of HodgeRank provides an effective method to globally
rank these movies, detect any inherent inconsistency, and is robust under temporal
variations.
Formation of pairwise ranking. Since pairwise rankings are relative measures, we
expect them to reduce the effect of temporal drift. Using only ratings by the same
customer in the same month, we employ three of the statistics described in Sect. 2.3
to form our pairwise rankings, i.e. the arithmetic mean of score differences (9), the
geometric mean of score ratios (10), and the binary comparisons (11). Since there is

12 Available from http://www.netflixprize.com.
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Fig. 4 Average scores of six selected movies over 74 months. The three movies in the top row has a
decreasing trend in monthly average scores, while in a contrast the other three movies in the bottom row
exhibits an increasing trend

nothing to suggest that a logarithmic scale is relevant, the logarithmic odds ratio gives
rather poor result as expected and we omitted it. For comparison, we compute the mean
score of each movie over all customers, ignoring temporal information. A reference
score is collected independently from MRQE (Movie Review Query Engine),13 the
largest online directory of movie reviews on the internet.
Global ranking with HodgeRank. We then solve the regression problem in (7) to obtain
a projection of pairwise ranking flows onto gradient flows, as given by Theorem 3(i).
Note that in this example, the pairwise ranking graph is complete with n = 6 nodes.
Table 1 collects the comparisons between different global rankings. The reference
order of movies is again via the MRQE scores.
Inconsistencies and curls. Since the pairwise ranking graph is complete, its clique
complex is a simplex with n = 6 vertices and so the harmonic term in the Hodge-
Rank is always zero. Hence the residual in Theorem 3 is just the curl projection,
i.e. R∗ = projim(curl∗) Ȳ . We will define two indices of inconsistency to evaluate the
results. The first, called cyclicity ratio, is a measure of global inconsistency given by
C p = ‖R∗‖22,w/‖Ȳ‖22,w; while the second, called relative curl, quantifies the local
inconsistency, and is given by the following function of edges and triangles,

cr ({i, j}, {i, j, k}) = (curl Ȳ )(i, j, k)

3(grad s∗)(i, j)
= Ȳi j + Ȳ jk + Ȳki

3(s∗j − s∗i )
.

13 Available from http://www.mrqe.com.
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Table 1 Global ranking of selected six movies via different methods: MRQE, mean score over custom-
ers, HodgeRank with arithmetic mean score difference, HodgeRank with geometric mean score ratio, and
HodgeRank with binary comparisons

Movie Global ranking (score)

MRQE Mean Hodge-difference Hodge-ratio Hodge-binary

Shakespeare in love 1 (85) 2 (3.87) 1 (0.247) 2 (0.0781) 1 (0.138)
Witness 2 (77) 3 (3.86) 2 (0.217) 1 (0.0883) 3 (0.107)
October sky 3 (76) 1 (3.93) 3 (0.213) 3 (0.0775) 2 (0.111)
The waterboy 4 (66) 6 (3.38) 6 (−0.464) 6 (−0.1624) 6 (−0.252)
Interview with the vampire 5 (65) 4 (3.71) 4 (−0.031) 4 (−0.0121) 4 (−0.012)
Dune 6 (44) 5 (3.49) 5 (−0.183) 5 (−0.0693) 5 (−0.092 )
Cyclicity ratio (%) – – 0.77 1.15 0.30

It can be seen that the HodgeRank with binary comparisons has the smallest inconsistency in terms of the
cyclicity ratio

Note that on every triangle {i, j, k} the curl Ȳi j + Ȳ jk + Ȳki measures the total sum
of cyclic flow, therefore cr measures the magnitude of its induced edge flow relative
to the gradient edge flow of the global ranking s∗. If cr has absolute value larger than
1, then the average cyclic flow has an effect larger than the global ranking s∗, which
indicates that the global ranking s∗ might be inconsistent on the pair of items.

Table 1 shows that in terms of cyclicity ratio, the best global ranking is obtained
from HodgeRank with binary comparisons, which has the smallest cyclicity ratio,
0.30%. This global ranking is quite different from merely taking mean scores and is
a better predictor of MRQE.

A closer look at relative curls allows us to identify the dubious scores. We will see
that the placement of Witness and October Sky according to the global rank-
ing contains significant inconsistency and should not be trusted. This inconsistency
is largely due to the curls in the triangles t1 = {Witness, October Sky, The
Waterboy}, t2 = {Witness, October Sky, Interview with the Vam-
pire}. In fact, there are only two relative curls whose magnitudes exceed 1; both
occurred on triangles that contain the edge e = {Witness, October Sky}. The
relative curl of t1 with respect to e is 3.6039 while that of t2 with respect to e is 4.1338.
As we can see from Table 1, the inconsistency (large curl) manifests itself as instability
in the placement of Witness and October Sky—the results vary across different
rank aggregation methods with no possibility of consensus. This illustrates the use of
curl as a certificate of validity for global ranking.

7.2 Currency exchange market

This example illustrates a globally consistent pairwise ranking on a complete graph
using currency exchange data taken from Yahoo! Finance.14 Consider a currency
exchange market with V representing a collection of seven currencies, USD, JPY,
EUR, CAD, GBP, AUD, and CHF. Here G = (V, E) is a complete graph since
every two currencies in V are exchangeable. Table 2 shows the exchange rates. By

14 Available from http://www.finance.yahoo.com/currency-converter.

123

http://www.finance.yahoo.com/currency-converter


240 X. Jiang et al.

Table 2 The last line is given by exp(−x∗) where x∗ is the solution to (26)

Currency exchange rate table

USD JPY EUR CAD GBP AUD CHF

1 USD 1.0000 114.6700 0.6869 0.9187 0.4790 1.0768 1.1439

1 JPY 0.0087 1.0000 0.0060 0.0080 0.0042 0.0094 0.0100

1 EUR 1.4558 166.9365 1.0000 1.3374 0.6974 1.5676 1.6653

1 CAD 1.0885 124.8177 0.7477 1.0000 0.5214 1.1721 1.2451

1 GBP 2.0875 239.3791 1.4340 1.9178 1.0000 2.2478 2.3879

1 AUD 0.9287 106.4940 0.6379 0.8532 0.4449 1.0000 1.0623

1 CHF 0.8742 100.2448 0.6005 0.8031 0.4188 0.9413 1.0000
Univ. equiv. 1.7097 0.0149 2.4890 1.8610 3.5691 1.5878 1.4946

The data was taken from the Currency Converter Yahoo! Finance on 6 November 2007

logarithmic transform the exchange rates is converted into pairwise rankings as in
Example 2.2.2. The global ranking given by (26) (where δ∗0 = δ�0 ) defines a universal
equivalent that measures the ‘value’ of each currency. As the reader can check, the
logarithmic transform of the data in Table 2 is curl-free (up to machine precision),
which in this context means triangular arbitrage-free. In other words, there is no way
one could profit from a cyclic exchange of any three currencies in V . Since G is a
complete graph, the data has no harmonic components; so Hodge decomposition tells
us that local consistency must imply global consistency, which in this context means
arbitrage-free, i.e. there is no way one could profit from a cyclic exchange of any
number of currencies in V either.

7.3 Comparisons with pageRank and HITS

We apply HodgeRank to the problem of web ranking, which we assumed here to
mean any static linked objects, not necessarily the World Wide Web. As we shall see,
HodgeRank provides an alternative to PageRank [8] and HITS [29]. In particular, it
gives a new way to approximate PageRank and enables us to study the inconsistency
or cyclicity in PageRank models.

Consider a link matrix L where Li j is the number of links from site i to j . There
are two well-known spectral approach to computing the global rankings of websites
from L , HITS and PageRank. HITS computes the singular value decomposition L =
U�V�, where the primary left-singular vector u1 gives the hub ranking and the
primary right-singular vector v1 gives the authority ranking (both u1 and v1 are non-
negative real-valued by the Perron-Frobenius theorem). PageRank constructs from L

a Markov chain on the sites given by Pi j = αLi j∑
j Li j
+ 1−α

n , where n is the number of

sites and α = 0.85 trades-off between Markovian link jumps and random surfing.
It is clear that we may define an edge flow via

Yi j = log
Pi j

Pi j
. (38)
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However what property does such a flow capture in PageRank? To answer this ques-
tion we will need to recall the notion of a reversible Markov chain: An irreducible
Markov chain with transition matrix P and stationary distribution π is reversible if
πi Pi j = π j Pji . Therefore a reversible Markov chain P has a pairwise ranking flow
induced from a global ranking, Yi j = log(Pi j/Pi j ) = log π j − log πi , where log π

gives the global ranking. As we mentioned in Sect. 2.1, log π may be viewed as defin-
ing a negative potential on webpages if we regard ranking as being directed from a
higher potential site to a lower potential site. This leads to the following interpretation.

Let P∗ be the best reversible approximate of the PageRank Markov chain P , in the
sense that

P∗ = argmin P̃ reversible

∥∥∥∥∥log
P̃i j

P̃j i
− log

Pi j

Pji

∥∥∥∥∥
2

. (39)

Then the stationary distribution of P∗, denoted by π∗, is a Gibbs-Boltzmann distribu-

tion on webpages with potential −s∗, i.e. π∗i = es∗i /
(∑

k es∗k
)

, where s∗ is given by

the Hodge projection of Y onto the space of gradient flows. Hence the Hodge decom-
position of edge flow in (38) gives the stationary distribution of a best reversible
approximate of the PageRank Markov chain.

We may further compute the Hodge decomposition of iterated flows, Y k
i j =

log(Pk
i j/Pk

i j ). Clearly when k → ∞, the global ranking given by HodgeRank con-
verges to that given by PageRank. The benefit of the HodgeRank lies in that (1)
it provides a way to approximate the PageRank stationary distribution; and (2) it
enables us to study the inconsistency or cyclicity in PageRank Markov model. The
cost of computing the global ranking in HodgeRank in Theorem 3(i) only involves a
least squares problem of the graph Laplacian, which is less expensive than eigenvec-
tor computations in PageRank. For readers unfamiliar with numerical linear algebra,
it might be worth pointing out that even the most basic algorithms for linear least
squares problems guarantee global convergence in a finite number of steps whereas
there are (a) no algorithms for eigenvalue problems that would terminate in a finite
number of steps as soon as the matrix dimension exceeds 4; and (b) no algorithms
with guaranteed global convergence for arbitrary input matrices.

To illustrate this discussion, we use the UK Universities Web Link Structure data-
set.15 The dataset contains the number of web links between 111 UK universities
in 2002. Independent of this link structure is a research score for each university,
RAE 2001, performed during the 5-yearly Research Assessment Exercise.16 The RAE
scores are widely used in UK for measuring the quality of research in universities.
We retained 107 universities and eliminated four that are missing either RAE score,
in-link, or out-link. The data has also been used in [42] recently but for a differ-
ent purpose. Table 3 summarizes the comparisons among nine global rankings: RAE
2001, in-degree, out-degree, HITS authority, HITS hub, PageRank, HodgeRank with

15 Available from http://www.cybermetrics.wlv.ac.uk/database/stats/data from Webometrics. We used
counts at the directory level.
16 Available from http://www.rae.ac.uk.
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Table 3 Kendall τ -distance between different global rankings

Kendall τ -distance

RAE ’01 in-deg out-deg HITS auth HITS hub PageRank Hodge-1 Hodge-2 Hodge-4

RAE ’01 0 0.0994 0.1166 0.0961 0.1115 0.0969 0.1358 0.0975 0.0971

in-deg 0.0994 0 0.0652 0.0142 0.0627 0.0068 0.0711 0.0074 0.0065

out-deg 0.1166 0.0652 0 0.0672 0.0148 0.0647 0.1183 0.0639 0.0647

HITS auth 0.0961 0.0142 0.0672 0 0.0627 0.0119 0.0736 0.0133 0.0120

HITS hub 0.1115 0.0627 0.0148 0.0627 0 0.0615 0.1121 0.0607 0.0615

PageRank 0.0969 0.0068 0.0647 0.0119 0.0615 0 0.0710 0.0029 0.0005

Hodge-1 0.1358 0.0711 0.1183 0.0736 0.1121 0.0710 0 0.0692 0.0709

Hodge-2 0.0975 0.0074 0.0639 0.0133 0.0607 0.0029 0.0692 0 0.0025

Hodge-4 0.0971 0.0065 0.0647 0.0120 0.0615 0.0005 0.0709 0.0025 0

Note that HITS authority gives the nearest global ranking to the research score RAE ’01, while HodgeRank
for k = 2, 4 give closer results to PageRank which is the second closest to the RAE ’01

k = 1, 2, and 4, respectively. We then use Kendall τ -distance [27] to count the number
of pairwise mismatches between global rankings, normalized by the total number of
pairwise comparisons.

8 Summary and conclusion

We introduced combinatorial Hodge theory as a statistical ranking method based on
minimizing pairwise ranking errors over a model space. In particular, we proposed
HodgeRank, a Hodge theoretic approach for determining the global, local, and har-
monic ranking components of a dataset of voters’ scores on alternatives. The global
ranking in HodgeRank is computed via an l2-projection of a pairwise ranking edge
flow onto the space of gradient flows. We saw that among other connections to clas-
sical social choice theory, the score recovered from the global ranking in HodgeRank
is a generalization of the well-known Borda count to ranking data that is cardinal,
imbalanced, and incomplete. The remaining residual is the l2-projection onto the space
of divergence-free flows. A subsequent l2-projection of this divergence-free residual
onto the space of curl-free flows then yields a harmonic flow. The decomposition of
pairwise ranking into a global ranking component, a locally cyclic ranking compo-
nent, and a harmonic ranking component in HodgeRank is analogous to Helmholtz
decomposition in fluid dynamics and electrodynamics.

Consistency of ranking data is governed to a large extent by the structure of its
pairwise comparison graph; this is in turn revealed in the Helmholtz decomposition
associated with the graph Helmholtzian, the combinatorial Laplacian of the 3-clique
complex. The sparsity structure of a pairwise comparison graph imposes certain con-
straints on the topology and geometry of its clique complex, which in turn decides the
properties of our statistical ranking algorithms.
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Our results suggest that combinatorial Hodge theory could be a promising tool for
the statistical analysis of ranking, especially for datasets with cardinal, incomplete,
and imbalanced information.
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