13 research outputs found

    Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Biological Clocks and Rhythms in Polar Organisms

    No full text
    International audienceBiological clocks are universal to all living organisms on Earth. Their ubiquity is testament to their importance to life: from cells to organs and from the simplest cyanobacteria to plants and primates, they are central to orchestrating life on this planet. Biological clocks are usually set by the 'beat' of the day-night cycle, so what happens in polar regions during the Polar Night or Polar Day when there are periods of 24 hours of darkness or light? How would a biological clock function without a time-keeper? This chapter details evidence that biological clocks are central to structuring daily and seasonal activities in organisms at high latitudes. Importantly, despite a strongly reduced or absent day night cycles, biological clocks in the Polar Night still appear to be regulated by background illumination. Here we explore evidence for highly cyclic activity, from behaviour patterns to clock gene expression, in copepods, krill and bivalves. The ultimate goal will be to understand the role of endogenous clocks in driving important daily and seasonal life cycle functions and to determine scope for plasticity in a rapidly changing environment
    corecore