86 research outputs found

    Best care options for older prisoners with dementia – a scoping review

    Get PDF
    Introduction: The prisoner population is ageing and consideration is needed for how to best support those with age-related health conditions in the system. Existing work practices and organisational structures often fail to meet the needs of prisoners with dementia, and prison staff experience high levels of burden due to these prisoners’ increased needs. Little is known about the best method of responding to the needs of this growing sub-population of prisoners. Method: A scoping review was conducted to answer the question: What are the perceived best care options for prisoners with dementia? To be included, publications had to be publicly available, reported on research findings, or viewed opinions and commentaries on care practices relevant to older prisoners with dementia. Searches were conducted in eleven databases to identify relevant publications. Data from the included publications were extracted and summarised into themes. Results: Eight themes were identified that could support better care practices for prisoners with dementia: (1) early and ongoing screening for older prisoners; (2) specialised services; (3) specialised units; (4) programs/activities; (5) adaptations to current contexts; (6) early release or parole for older prisoners with dementia deemed at low risk of re-offending; and (7) training younger prisoners (8) as well as staff to assist older prisoners with dementia. Besides practical strategies improving care practice, costs, prison-specific resources and staff skills were highlighted as care barriers across all themes. A lack of empirical evidence supported these findings. Conclusion: One of the implications of the international ageing prison population is higher numbers of people incarcerated with dementia. Suggestions for best care approaches for prisoners with dementia now need to move from opinion to empirical approaches to guide practice

    SNP selection for genes of iron metabolism in a study of genetic modifiers of hemochromatosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We report our experience of selecting tag SNPs in 35 genes involved in iron metabolism in a cohort study seeking to discover genetic modifiers of hereditary hemochromatosis.</p> <p>Methods</p> <p>We combined our own and publicly available resequencing data with HapMap to maximise our coverage to select 384 SNPs in candidate genes suitable for typing on the Illumina platform.</p> <p>Results</p> <p>Validation/design scores above 0.6 were not strongly correlated with SNP performance as estimated by Gentrain score. We contrasted results from two tag SNP selection algorithms, LDselect and Tagger. Varying r<sup>2 </sup>from 0.5 to 1.0 produced a near linear correlation with the number of tag SNPs required. We examined the pattern of linkage disequilibrium of three levels of resequencing coverage for the transferrin gene and found HapMap phase 1 tag SNPs capture 45% of the ≥ 3% MAF SNPs found in SeattleSNPs where there is nearly complete resequencing. Resequencing can reveal adjacent SNPs (within 60 bp) which may affect assay performance. We report the number of SNPs present within the region of six of our larger candidate genes, for different versions of stock genotyping assays.</p> <p>Conclusion</p> <p>A candidate gene approach should seek to maximise coverage, and this can be improved by adding to HapMap data any available sequencing data. Tag SNP software must be fast and flexible to data changes, since tag SNP selection involves iteration as investigators seek to satisfy the competing demands of coverage within and between populations, and typability on the technology platform chosen.</p

    The quail genome:insights into social behaviour, seasonal biology and infectious disease response

    Get PDF
    Background: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. Results: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. Conclusions: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species

    Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans

    Get PDF
    We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1Δ18/Δ18), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5′ part of the ITPR1 gene, encompassing exons 1–10, 1–40, and 1–44 in three studied families, underlies SCA15 in humans

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Heterozygous Loss-of-Function Mutations in DLL4 Cause Adams-Oliver Syndrome.

    Get PDF
    Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Measurement of the Bs Lifetime in Fully and Partially Reconstructed Bs -> Ds- (phi pi-)X Decays in pbar-p Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a measurement of the Bs lifetime in fully and partially reconstructed Bs -> Ds(phi pi)X decays in 1.3 fb-1 of pbar-p collisions at sqrt(s) = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We measure tau(Bs) = 1.518 +/- 0.041 (stat.) +/- 0.027 (syst.) ps. The ratio of this result and the world average B0 lifetime yields tau(Bs)/tau(B0) = 0.99 +/-0.03, which is in agreement with recent theoretical predictions.Comment: submitted to Phys. Rev. Let
    corecore