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ABSTRACT 

The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an 

increasingly significant model species in avian developmental, behavioural and disease 

research. We have produced a high-quality quail genome sequence, spanning 0.93 Gb 

assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and 

chromosomal organization, the quail genome shows high similarity to the chicken genome. 

We demonstrate the utility of this genome through three diverse applications. First, we 

identify selection signatures and candidate genes associated with social behaviour in the quail 

genome, an important agricultural and domestication trait. Second, we investigate the effects 

and interaction of photoperiod and temperature on the transcriptome of the quail medial basal 

hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the 

response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and 

pathways were downregulated, and this may be key to the susceptibility of quail to 

H5N1.This genome will facilitate further research into diverse research questions using the 

quail as a model avian species.  
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INTRODUCTION 

Japanese quail (Coturnix japonica) is a migratory bird indigenous to East Asia and is a 

popular domestic poultry species raised for meat and eggs in Asia and Europe. Quail have 

been used in genetics research since 1940 (Shimakura 1940), and are an increasingly 

important model in developmental biology, behaviour and biomedical studies (Minvielle 

2009). Quail belong to the same family as chickens (Phasianidae) but have several 

advantages over chickens as a research model. They are small and easy to raise, have a rapid 

growth rate and a short life cycle, becoming sexually mature only seven to eight weeks after 

hatching (Huss et al. 2008).  

Quail have become a key model in several research fields (Cheng et al. 2010). The 

avian embryo has long been a popular model for studying developmental biology due to the 

accessibility of the embryo, which permits fate mapping studies (Le Douarin and Barq 1969; 

Le Douarin and Kalcheim 1999) and dynamic imaging of embryogenesis (Huss et al. 2015; 

Bénazéraf et al. 2017; Sato et al. 2017). Several transgenic lines that express fluorescent 

proteins now exist, which greatly facilitates time-lapse imaging and tissue transplantation 

(Scott and Lois 2005; Sato et al 2010; Huss et al 2015; Moreau et al. 2018; Huss et al In 

Press) 

The quail embryo survives manipulation and culture better than chicken embryos 

making them ideal for this type of research (Huss et al. 2008). Quail have been used as a 

model for stem cell differentiation, for example a culture system that mimics the development 

of hematopoietic stem cells has been recently developed, as quail show greater cell 

multiplication in these cultures than chickens (Yvernogeau et al. 2016). Quail are also used to 

study the genetics underlying social behaviours (Mills et al. 1997), sexual behaviour (Adkins-

Regan 2009; Meddle et al. 1997), pre- and post- natal stress programming (Marasco et al. 

2016), and emotional reactivity (Mills and Faure 1991; Jones and Mills 1999; Beaumont et al. 
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2005; Recoquillay et al. 2013). Japanese quail have a fast and reliable reproductive response 

to increased photoperiod, making them an important model species for investigation into 

seasonal behaviour and reproduction in birds (Robinson and Follett 1982; Nakane and 

Yoshimura 2010; Nakane and Yoshimura 2014). The molecular mechanisms behind 

seasonality including metabolism and growth, immunity, reproduction, behaviour and feather 

moult is poorly understood despite its importance in the management of avian species. 

Quail are also important in disease research (Baer et al 2015). Different strains of quail 

have been developed as models of human disease such as albinism (Homma et al. 1968) or 

necrotizing enterocolitis in neonates (Waligora-Dupriet et al. 2009). Quail lines have also 

been selected on their immunological response (Watanabe and Nagayama 1979). There are 

key differences in the immunogenetics of quail and chicken - particularly in the major 

histocompatibility complex (MHC) (Shiina et al 2004; Hosomichi et al. 2006). Investigating 

the immunology of quail is important for understanding infectious disease spread and control 

in poultry. For example they are an important species for influenza transmission, with 

previous research showing that quail may play a key role as an intermediate host in evolution 

of avian influenza (Makarova et al. 2003; Perez et al. 2003; Wan and Perez 2006). Zoonotic 

H5N1 influenza strains have crossed from quail to human causing mortality in the past (Guan 

et al. 2002; Webster et al. 2002), making them a potential pandemic source.  

We have produced a high-quality annotated genome of the Japanese quail (Coturnix 

japonica), and herein describe the assembly and annotation of the quail genome and 

demonstrate key uses of the genome in immunogenetics, disease, seasonality and behavioural 

research demonstrating its utility as an avian model species. 
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RESULTS 

Genome assembly and annotation 

We sequenced a male Coturnix japonica individual from an inbred quail line using an 

Illumina HiSeq 2500 instrument. Total sequence genome input coverage of Illumina reads 

was ~73x, using a genome size estimate of 1.1 Gb. Additionally, 20x coverage of long 

PacBio reads were sequenced and used to close gaps. The assembled male genome Coturnix 

japonica 2.0 is made up of a total of 2,531 scaffolds (including single contigs with no 

scaffold association) with an N50 scaffold length of 2.9 Mb (N50 contig length is 511 kb). 

The assembly sequence size is 0.927 Gb with only 1.7 % (16 Mb) not assigned to 33 total 

chromosomes. Coturnix japonica 2.0 assembly metrics were comparable to previous 

assemblies of Galliformes, and superior to other quail genomes (Oldeschulte et al. 2017; Wu 

et al. 2018) in ungapped (contigs) sequence length metrics (Table 1). Specifically, in 

comparison to recently published genomic data from the Japanese quail (Wu et al. 2018), our 

genome is substantially less fragmented (contig N50 of 0.511 Mb vs 0.027 Mb), has been 

assigned to more chromosomes, and has more complete annotation with ncRNA, mRNA and 

pseudogenes predicted. Our estimate of total interspersed repetitive elements was 19% 

genome-wide based on masking with Windowmasker (Morgulis et al. 2018). In the genomes 

of other quail species the estimated repeat content was much lower; ~10% less in both 

species (Oldeschulte et al. 2017). 

To improve the quantity and quality of data used for the annotation of the genome, we 

sequenced RNA extracted from seven tissues sampled from the same animal used for the 

genome assembly. Using the same inbred animal increases the alignment rate and accuracy. 
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The amount of data produced for annotation from the 7 tissues is (in Gb): 18.9 in brain, 35.6 

in heart, 19.3 in intestine, 27.8 in kidney, 39.0 in liver, 18.8 in lung and 34.0 in muscle. High 

sequencing depth was aimed for in these tissues, to help detect low expression genes 

including those that are tissue-specific. In total we predicted 16,057 protein-coding genes and 

39,075 transcripts in the Coturnix japonica genome (Table 2). In comparison to other 

assembled and annotated Galliformes, transcript and protein alignments of known chicken 

RefSeq proteins to Coturnix japonica suggest the gene representation is sufficient for all 

analyses described herein (Table 3). However, we find ~1000 fewer protein coding genes in 

the Japanese quail than the northern bobwhite (Colinus virginianus) and scaled quail 

(Callipepla squamata) genomes (Oldeschulte et al. 2017). We attribute this to the use of 

different gene prediction algorithms, and the slightly lower assembled size of Japanese quail, 

927 Mb compared to 1 Gb in other quail genomes (Oldeschulte et al. 2017; Table 1). 

For further annotation, a set of genes unnamed by the automated pipeline were 

manually annotated. As part of an ongoing project to investigate hemogenic endothelium 

commitment and HSC production (Yvernogeau et al. 2016), transcriptomes were produced 

for two cultured cell fractions. Study of these cells is critical for developmental biology and 

regenerative medicine, and quail are an excellent model for studying these as they produce 

much more hematopoietic cells than similar chicken cultures. Approximately 8,000 genes 

were expressed in these cells lines which lacked gene names or annotation from the 

automated annotation pipeline. Using BLAST (Altschul et al. 1990) searches to identify 

homology to other genes, 3,119 of these were manually annotated (Supplemental File 1).  

Genome completeness was also quantitatively assessed by analyzing 4,915 single copy, 

orthologous genes derived from OrthoDB v7 and v9 (Zdobnov et al. 2017). Presence and 

contiguity of these conserved, avian-specific genes were tested with BUSCO v3.0.2 

(Waterhouse et al. 2017). A comparison with the chicken assembly (Gallus gallus 5.0; 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/575332doi: bioRxiv preprint first posted online Mar. 13, 2019; 

http://dx.doi.org/10.1101/575332


8 

 

Warren et al. 2017) indicates that 95% of these genes are present and full length in all three 

assemblies. The percentage of duplicated, fragmented and missing genes are also very similar 

between the assemblies (Supplemental Figure S1). The quail genome has 10 more missing 

and 23 more fragmented genes than the Gallus gallus 5.0 assembly. However, relative to the 

total number of genes in the benchmarking set, these increases amount to just 0.2% and 0.5%, 

respectively. This indicates that the quail genome, like the chicken genome, is highly 

contiguous and in terms of its expected gene content, is close to complete. 

 

Table 1. Representative assembly metrics for sequenced Galliform genomes1. 

 

Common name 

 

Assembled version 

N50 contig 

(Mb) 

N50 scaffold 

(Mb) 

Total assembly 

size (Gb) 

Assembled 

chromosomes 

Japanese quail Coturnix japonica 2.0 0.511 3.0 0.93 33 

Japanese quail Wu et al. PMID: 

29762663 

0.027 1.8 1.01 34 

Chicken Gallus gallus 5.0 2.895 6.3 1.20 30 

Scaled quail ASM221830v1 0.154 1.0 1.01 NA 

Northern bobwhite ASM59946v2 0.056 2.0 1.13 NA 

Turkey Turkey 5.0 0.036 3.8 1.12 33 

1All species-specific assembly metrics derived from the NCBI assembly archive.  
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Table 2. Representative gene annotation measures for assembled Galliform genomes1. 

 

Common name 

 

Assembled version 

Protein coding genes Total 

ncRNA 

mRNAs 

Japanese quail Coturnix japonica 2.0 16,057 4,108 39,075 

Japanese quail Wu et al. PMID: 

29762663 

16, 210 NA NA 

Chicken Gallus gallus 5.0 19,137 6,550 46,334 

Turkey Turkey 5.0 18,511 8,552 33,308 

1All species-specific gene annotation metrics derived from the NCBI RefSeq database.  
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Table 3. Estimates of gene and protein representation for sequenced Galliform genomes. 

  Transcript
1
 Protein

2
 

 

Common name 

 

Assembled 

version 

 

Average % 

identity 

 

Average % 

coverage 

 

Average % 

identity 

 

Average % 

coverage 

Japanese quail Coturnix 

japonica 2.0 

93.4 96.2 80 85 

Chicken Gallus 

gallus 5.0 

90.4 84.3 78 84.6 

Turkey Turkey 5.0 99.1 93.8 80.7 80.1 

1 Predicted transcripts per species aligned to Aves known RefSeq transcripts (n=8,776); 

turkey aligned to same species Genebank (n=380). 

2 Predicted proteins per species aligned to Aves known RefSeq (n=7,733).   

 

 

 

Galliforme genome synteny 

Comparative mapping of the quail and chicken genomes revealed a high conservation 

of the chromosomal arrangement (Fig. 1; Supplemental File S2), with no major 

rearrangements since the divergence of the two species approximately 23 MYA (van Tuinen 

and Dyke 2004). All identified quail chromosomes showed synteny conservation to their 

chicken chromosomal counterparts. By comparison, the turkey (Meleagris gallopavo) 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/575332doi: bioRxiv preprint first posted online Mar. 13, 2019; 

http://dx.doi.org/10.1101/575332


11 

 

genome is more highly rearranged with two chromosomes having synteny conservation to 

each of chicken and quail chromosomes 2 and 4 (Dalloul et al. 2010). No large intra-

chromosomal translocations were seen between chicken and quail chromosomes, compared 

to the two seen in the turkey (Dalloul et al. 2010). Inversions and inter-chromosomal 

translocations were common, with 33 large (>1Mb) inversions or translocations occurring 

between chicken and quail chromosomes (Fig. 2; Supplemental File S2). The quail 

chromosomes are more compact than their chicken and turkey counterparts (14% smaller on 

average). This may be linked to the metabolic cost of migratory flight in quails, as previous 

studies have demonstrated smaller genomes and higher deletion rates in flying birds 

compared to flightless birds (Kapsuta et al. 2017) 

Orthologous genes between quail and closely related species were identified through 

reciprocal BLAST searches. One-to-one orthologs in chicken were identified for 78.2% of all 

quail genes and 91.8% of protein-coding quail genes (Supplemental Table S1), indicating a 

high degree of genic conservation in the quail genome. Fewer orthologs were seen between 

turkey and quail genes (69.3%), although the number of orthologs of protein-coding genes 

was similar (91.7%), so the discrepancy is likely due to missing non-coding gene predictions 

in the turkey genome. As expected, conservation of one-to-one orthologs was lower with the 

mallard duck (Anas platyrhynchos), with duck orthologs identified for 64.5% of quail genes 

(78.9% protein-coding genes).  
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Figure 1: Synteny map of chicken (red) and quail (blue) chromosomes 

 

 

Endogenous retroviruses (ERVs) 

ERVs represent retroviral integrations into the germline over millions of years and are 

the only Long Terminal Repeat (LTR) retrotransposons which remain in avian genomes 

(Mason et al. 2016; Kapusta and Suh 2017). Whilst the majority of ERVs have been degraded 

or epigenetically silenced, more recent integrations retain the ability to produce retroviral 

proteins, impacting the host immune response to novel exogneous infections (Verla et al. 

2009; Aswad et al. 2012). A total of 19.4 Mb of the Coturnix japonica 2.0 assembly was 

identified as ERV sequence using the LocaTR pipeline (Mason et al. 2016; Supplemental 

File S3, Supplemental File S4). ERVs therefore account for 2.1% of the quail genome 
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sequence, levels similar to those in the chicken and turkey (Warren et al. 2017; 

Supplemental Table S2), and similarly analysed passerine birds (Mason et al. 2016).  

The majority of ERV sequences in all three genomes were short and fragmented, but 

393 intact ERVs were identified in the quail, most of which were identified as alpha-, beta- or 

gamma-retroviral sequences by reverse transcriptase homology. It is possible that the smaller 

genome size of the quail compared to other birds reflects a more limited expansion of ERVs 

and other repeats (such as the LINE CR1 element; Supplemental Table S2) within the 

genome, following the basal avian lineage genome contraction (Kapusta and Suh 2017; 

Kapusta et al. 2017). However, ERV content is highly species-specific (Mason et al. 2016). 

Despite variation in total and intact ERV content, the overall genomic ERV distribution 

in these three gallinaceous birds was highly similar. ERV sequence density was strongly 

correlated with chromosome length on the macrochromosomes and Z chromosome (r > 0.97; 

P < 0.001), but there was no significant correlation across the other smaller chromosomes. 

Furthermore, ERV density on each Z chromosome was at least 50% greater than would be 

expected on an autosome of equal length. These results support the depletion of repetitive 

elements in gene dense areas of the genome, and the persistence of insertions in poorly 

recombining regions, as was seen in the chicken (Mason et al. 2016). This is further 

supported by the presence of clusters of intact ERVs (where density was five times the 

genome-wide level) on the macrochromosomes and sex chromosomes (Supplemental Table 

S2).  

 

Immune gene repertoire 

We investigated the immune genes in the quail genome in detail due to the importance 

of quail in disease research. The MHC-B complex of the quail has been previously sequenced 

and found to be generally conserved compared to chicken in terms of gene content and order 
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(Shiina et al. 2004; Hosomichi et al. 2006). However the quail MHC contains a higher copy 

number of several gene families within the MHC-B (Shiina et al. 2004) and shows increased 

structural flexibility (Hosomichi et al. 2006), as well as an inversion in the TAP region 

(Shiina et al. 2004). The MHC-B sequence in the quail genome extends from the previously 

sequenced scaffold, and this additional region also contains similar gene content and order to 

chicken, but with gene copy number variations. As in the chicken, the CD1A and B genes are 

found downstream of the MHC I region, while many TRIM family genes and IL4I1 are 

encoded upstream. The BG region, which encodes a family of butrophylin genes known as 

BG genes in the chicken, was also present in the quail. Within this region, six BG genes were 

identified in the quail, compared to thirteen in the chicken (Salomonsen et al. 2014). At least 

five of these BG genes are transcribed in the quail lung and ileum. The chicken and turkey 

have an additional MHC locus known as the Rfp-Y or MHC-Y locus, which contains several 

copies of non-classical MHCI-Y and MHCIIB-Y genes. However, no MHC-Y genes have 

been previously identified in quail. BLAST searches of both the quail genome and quail 

transcriptomes, as well as the bobwhite and scaled quail genomes, failed to identify any 

MHC-Y genes, indicating this locus probably does not exist in the quail.  

Cathelicidins and defensins are two families of antimicrobial peptides that have 

activities against a broad range of pathogens and exhibit immune-modulatory effects. 

Orthologs of all four chicken cathelicidins and of thirteen chicken defensins (Cheng et al. 

2015) were identified in the quail genome (Supplemental File S5). Due to their high 

divergence, of the thirteen defensins only four were annotated through the annotation 

pipeline, with the remainder identified through BLAST and HMMER searches with chicken 

defensins. The only poultry defensin missing from the quail genome is AvBD7. The defensins 

are encoded in a 42 kb cluster on quail chromosome 3, as in chickens. A 4 kb gap in the 

scaffold in this region may explain the missing AvBD7 sequence.  
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Several genes are thought to be crucial for influenza resistance in both humans and 

birds, including RIG-I, TLR and IFITM genes. RIG-I has not previously been identified in 

chicken, despite being present in ducks and many other bird orders, and is considered highly 

likely to be deleted from the chicken genome (Barber et al. 2010). In addition, an important 

RIG-I binding protein RNF135 has also not been identified in chicken (Magor et al. 2013). 

Likewise, an ortholog of RIG-I or RNF135 could not be identified in the quail genome or 

transcriptomes through BLAST searches and therefore is likely missing in the quail also. 

Orthologs of all five chicken IFITM genes (IFTIM1, 2, 3, 5 and 10) were identified in the 

quail genome and transcriptomes. In addition, orthologs of each chicken TLR, including key 

TLRs for viral recognition, TLR4 and TLR7, were identified in the quail genome, except that 

of TLR1A. 

 

Selection for social motivation 

Quail has been used as a model to study the genetic determinism of behaviour traits 

such as social behaviours and emotional reactivity (Beaumont et al. 2005; Recoquillay et al. 

2013; Recoquillay et al. 2015), these being major factors in animal adaptation. Moreover 

quail selected with a low social motivation behave in a way that can be related to autistic-like 

traits, so the genes and causal variants are of wider interest to the biomedical community. 

Here we use the new quail genome assembly to improve previous results on the detection of 

selection signatures in lines selected for sociability. Due to the non-availability of a useable 

quail reference genome at the start of these studies, genomic sequence data produced from 

two DNA pools of 10 individuals each from two quail lines diverging for social motivation 

had been aligned to the chicken reference genome, GallusWU2.58 (Fariello et al. 2017). As a 

result, only 55% of the reads had mapped in proper pairs, whereas by using our quail genome 

as a reference, this number increased to 92%. This corresponds to an improvement of the 
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averaged coverage from 9x to 20x and of the number of analysed SNPs from 12,364,867 to 

13,506,139. 

The FLK (Bonhomme et al. 2010) and local (Fariello et al. 2017) score analysis led to the 

detection of 32 significant selection signature regions (p < 0.05), (Supplemental File S6). 

Supplemental Figure S2 shows an example of such a region on Chr20. This represents a 

substantial improvement in the number of detected regions, compared with the 10 regions 

obtained when using the chicken genome as a reference (Fariello et al. 2017). Of the 32 

detected regions, six may be merged in pairs due to their physical proximity, four regions 

map to new linkage groups absent in the previous analysis, and eight correspond with results 

obtained in the previous study (Supplemental File S6). Altogether, 17 new regions were 

detected. Of these, eight could be seen in the previous analysis, but had not been considered 

as they did not reach the significance threshold, and nine are solely due to the availability of 

our quail assembly. Two very short selection signatures previously detected using the chicken 

assembly as reference are not recovered here and were most probably false positives.  

These results confirm the selection signature regions harbouring genes involved in 

human autistic disorders or being related to social behaviour (Fariello et al. 2017; PTPRE, 

ARL13B, IMPK, CTNNA2). Among the genes localised in the newly detected genomic 

regions, several have also been shown to be implicated in autism spectrum disorders or 

synaptogenic activity (Supplemental File S6): mutations in the EEF1A2 gene (Eukaryotic 

elongation factor 1, alpha-2 ) have been discovered in patients with autistic behaviours 

(Nakajima et al. 2015); EHMT1 (Euchromatin Histone Methyltransferase 1) is involved in 

autistic syndrome and social behaviour disorders in human and mouse (Nakajima et al. 2015; 

Kleefstra et al. 2006; Balemans et al. 2010 ; Mitra et al. 2017); LRRTM4 (Leucine Rich 

Repeat Transmembrane Neuronal 4) is a synapse organizing protein, member of the LRRTM 
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family, involved in mechanisms underlying experience-dependent synaptic plasticity 

(Roppongi et al. 2017). 

Autistic spectrum disorders are observed in several disorders that have very different 

aetiology, including fragile X Syndrome, Rett Syndrome or Foetal Anticonvulsant Syndrome. 

While these disorders have very different underlying etiologies, they share common 

qualitative behavioural abnormalities in domains particularly relevant for social behaviours 

such as language, communication and social interaction (Rutter 1978; American Psychiatric 

Association 2000). In line with this, several experiments conducted on high social (HSR) and 

low social (LSR) reinstatement behaviour quail indicate that the selection program carried out 

with these lines is not limited to selection on a single response, social reinstatement, but 

affect more generally the ability of the quail to process social information (Marasco et al. 

2016). Differences in social motivation, but also individual recognition have been described 

between LSR and HSR quail (Balemans et al. 2010; Mitra et al. 2017). Inter-individual 

distances are longer in LSR quail (Balemans et al 2010) and LSR young quail have decreased 

interest in unfamiliar birds (Roppongi et al. 2017) and lower isolation distress than HSR ones 

(Recoquillay et al. 2013). 

Further experiments will be required to examine the possible functional link between 

the selected genes and the divergent phenotype observed in these lines. Also, by analyses of 

genes known to be differentially expressed in the zebra finch during song learning we hope to 

comparatively understand molecular systems linked to behaviour in the avian brain. 

 

A model for avian seasonal biology  

Quail is an important model for studying seasonal biology. Seminal work in quail established 

that pineal melatonin (Ralph et al. 1967; Lynch 1971) is regulated by the circadian clock 
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(Cockrem and Follett 1985). In mammals, photo-sensing is dependent on a single retinal 

photoreceptor melanopsin (OPN4) that regulates pineal melatonin release. Nocturnal 

melatonin is critical for mammalian neuroendocrine response to photoperiod and is likely to 

target melatonin receptors in the pars tubularis (PT; Wood and Loudon 2014). Birds have a 

distinct non-retinal mechanism for photoreception through deep-brain photoreceptors 

(Menaker 1968) and melatonin does not appear to be critical for most avian seasonal cycles 

(Yoshimura 2013). The medial basal hypothalamus (MBH) seems to be a critical region for 

avian perception of photoperiod (Yasuo et al. 2003). There are currently three main 

candidates for avian deep-brain photoreceptors that communicate the photoperiod signal to 

seasonal cycles: OPN4 (Haas et al. 2017), neuropsin (OPN5; Nakane et al. 2010) and 

vertebrate ancient (VA; García-Fernández et al. 2015).  

While melatonin may not be a critical component to avian photoperiod signal transduction it 

may play a role. Photoperiodic regulation of Gonadotropin-inhibitory hormone (GnIH), first 

identified in quail, has been shown to be regulated by melatonin (Chowdhury et al. 2010). 

Melatonin receptors are also located in the quail PT (Cozzi et al. 1993) and like the 

mammalian PT (Lincoln et al. 2002) the expression of core clock genes in the quail PT 

(Yasuo et al. 2004) are phase-shifted with photoperiod. Previously, two studies (Yasuo et al. 

2003; Ikegami et al. 2015)  have examined temperature dependent effects of photoperiod on 

core clock genes, TSHβ in the PT and DIO2 and DIO3 in the MBH.  Here, we leverage the 

new quail genome for genome-wide analysis to determine how photoperiod and temperature 

interact to determine the MBH transcriptome (Fig. 2A). 

We examined the effect of short- (SD) and long-day (LD) photoperiod (SD, 6L18D & LD, 

20L4D) and temperature (9°C and 23°C) (Fig. 2A; Supplemental Figure S3) on genome-

wide transcription and identified 269 significantly differentially expressed genes (DEGs; 

FDR<0.05, log2FC>1; Supplemental File S7). 127 DEGs were regulated irrespective of 
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temperature, 60 and 82 DEGs were specific to the contrast with SD 9°C and 23°C, 

respectively.  

We identified 16 temperature dependent DEGs with a large modulating effect of temperature 

(log2FC>1) (Fig. 2E). With the exception of aldehyde dehydrogenase (ALDH1A1), the 

temperature-dependent photoperiod effected DEGs were down-regulated in LD. There was 

an equal division of genes between temperature dependent amplification and suppression of 

LD down-regulated genes.  

The MBH shows strong TSHβ induction in LD (Fig. 2C-D, log2FC=7.96 at 9°C, 8.36 at 

23°C), indicating the stamp contains the adjacent PT as well as the MBH. Ikegami et al. 

(Ikegama et al. 2015) in-situ data support the localisation of TSHβ in the quail PT. Consistent 

with previous MBH findings (Ikegami et al. 2015), we observed significant up-regulation of 

DIO2 and down-regulation of DIO3, in LD. We also observed a significant effect of cold 

(9°C) in short days as an amplifier of DIO3 LP down-regulation (Fig. 2E, log2FC=-3.86 at 

9°C, -2.51 at 23°C). We were unable to confirm any significant effect of cold on DIO2. We 

note significant photoperiod-dependent down-regulation of the thyroid hormone specific 

transporter SLC16A2 in LP that was amplified at 9°C (log2FC=-1.19 at 9°C, -1.63 at 23°C). 

Differential regulation of G-protein coupled receptor (GPCR) signalling was the most 

enriched pathway regulated by photoperiod (Fig. 2F; Supplemental File S8). It also emerged 

as the largest connecting component within the String interaction network of DEG genes 

(Fig. 2G). TSHβ itself binds to the GPCR THR (Millar et al. 2012). G-protein signalling is 

also critical for opsin signalling (Shichida et al. 2009). We also observed transcriptional 

regulation in other GPCR hormone receptors, including Relaxin, Vasopressin, LH, Prolactin, 

and GH. GnRH is associated with VA opsins in AVT neurones and has been suggested as a 

photoperiod sensor (García-Fernández et al. 2015). We also noted down-regulation of the 

neuronally important GPCR GPR20 (Fig. 2G). In mice, deficiency of GPR20 is associated 
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with hyperactivity and may play a role in cAMP-dependent mitogenesis (Hase et al. 2008). 

There was a strong enrichment of collagen biosynthetic processes and extracellular matrix 

organisation processes (Fig. 2F) and a large body of genes associated with cell differentiation 

and development (Fig. 2H). 

We observed photoperiod-dependent regulation of a single clock gene, CRY4. CRY4 is up-

regulated in LP (log2FC=0.85 at 23°C, 1.37 at 9°C). This is consistent with the finding of 

Yasuo et al. (Yasuo et al. 2003), that the expression of PER2-3, CLOCK, BMAL1, CRY1-2 

and E4BP4 remain stable across photoperiods. Intriguingly, CRY4 has recently been 

proposed as a component of light-dependent magneto-reception in the avian retina (Pinzon-

Rodriguez et al. 2018).  

We detected photoperiod effects on OPN4 transcripts, which were up-regulated in LD. 

Photoperiod-dependent expression in OPN4 may well play a role in the photoperiod-

refractory response. Encephalopsin (OPN3) was found to be highly expressed in the MBH 

(2.31..2.42 log2CPM) but without significant changes in expression. OPN3 has recently been 

identified in the hypothalamus of chick hatchlings (Kato et al. 2016) but not as yet to the 

MBH of adult birds. OPN5 (-0.46..-0.89 log2CPM) and VA (-0.11..0.31 log2CPM) were also 

unchanging and expressed at a low level in the MBH sample. 

In conclusion, we confirm the importance of temperature and photoperiod-dependent 

regulation of thyroid hormone metabolism in the avian MBH (Fig. 3). Temperature-

dependent amplification and suppression of the photoperiod response may indicate qualitative 

differences in the MBH pathways or simply reflect different stages of progression through 

seasonally phased processes. This could be further investigated by contrasting across time 

series at different temperatures. We also observed concurrent regulation of multiple hormonal 

signalling pathways, this may reflect a diversity of pathways and cell types in the MBH or 

reflect a corrective mechanism to account for cross-talk with other GPCR pathways. We 
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observed LH, PRL and GH receptor transcript changes which may indicate modulation of a 

GnRH-anterior pituitary feedback mechanism. Intriguingly, we also note LD induction of 

CRY4 which raises the question - is there a role for seasonally active magneto-sensing in the 

MBH? In addition to observing high OPN3 expression in the MBH, we also noted LD 

overexpression of OPN4, which could provide a potential component for an avian 

photoperiod-refractory mechanism.  This study has demonstrated the utility of genome-wide 

transcriptome analysis in quail to provide valuable insights and novel hypotheses for avian 

seasonal biology. 
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Figure 2: Genome-wide analysis of temperature-dependent transcriptome responses to 

photoperiod in quail. Experimental design showing the 3 time-points each sampled after 4 weeks of 

the target photoperiod (circled) with RNASeq at n=4 A. Intersection of DEGs between LD 23°C vs 
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SD 23°C and LD 23°C vs SD 9°C B. Volcano plots comparing LD 23°C vs SD 23°C showing 71 up 

(yellow) and 42 down (blue) DEGs C and LD 23°C vs SD 23°C D. Grey labels do not pass fold 

change threshold at 23°C. Temperature-dependent effects on fold change in DEGs when comparing 

SD at 23°C and SD 9°C. Arrows point from 23°C to 9°C and indicate a significant amplifying (green) 

or dampening (orange) effect of 9°C on photoperiod response E significantly enriched pathways in 

DEG genes at LD vs SD 23°C (grey) and LD vs SD 9°C (teal) q-value thresholds F. Network of up 

(yellow), down (blue), and no significant change (white) regulated inter-connected genes (LD vs SD) 

using the String database. The left side of a node indicates the expression change at 23°C and right at 

9°C. Edges are weighted by the combined score, and green edges represent experimental support G. 

 

 

 

Figure 3: Photoperiod signalling in the MBH incorporating observations from RNASeq 
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Quail response to H5N1 influenza 

Highly pathogenic influenza A viruses (HPAI), such as H5N1, are responsible for 

enormous economic losses in the poultry industry and pose a serious threat to public health. 

While quail can survive infection with low pathogenic influenza viruses (LPAI), they 

experience high mortality when infected with strains of HPAI (Bertran et al. 2013). Quail are 

more susceptible than chickens to infection by some strains of H5N1 including one that 

caused human mortality (Webster et al. 2002). Previous research has shown that quail may 

play a key role as an intermediate host in the evolution of avian influenza, allowing viral 

strains to spread from wild birds to chickens and mammals (Makarova et al. 2003; Perez et al. 

2003; Webster et al. 2002; Nguyen et al. 2016). Unlike quail and chicken, aquatic reservoir 

species such as duck are tolerant of most HPAI strains (Cornelissen et al. 2013). The 

generation of a high-quality quail genome has enabled us to perform a  differential 

transcriptomic analysis of gene expression in quail infected with LPAI and HPAI, to better 

understand the response of quail to influenza infection. Lung and ileum samples were 

collected at 1 day post infection (1dpi) and 3 days post infection (3dpi). We also reanalysed 

previous data collected from duck and chickens (Smith et al. 2015) and compare this to the 

quail response. 

To provide an overview of the response to LPAI and HPAI in quail we examined pathway 

and GO term enrichment of DEGs (see Supplemental File S9, Supplemental File S10 and 

Supplemental Figures S4-7). In response to LPAI infection, pathways enriched in the ileum 

included metabolism, JAK/STAT signalling, IL6 signalling and regulation of T-cells 

(Supplemental Figure S4).  In the lung, pathways upregulated included complement, IL8 

signalling, and leukocyte activation (Supplemental Figure S5). In the lung at 3dpi highly 

enriched GO terms included ‘response to interferon-gamma’, ‘regulation of NF-kappaB‘, 
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‘granulocyte chemotaxis’ and ‘response to virus’ (Supplemental Figure S6), which are key 

influenza responses. This indicates an active immune response occurs to LPAI infection in 

quail, involving both ileum and lung, but with the strongest immune response occurring in the 

lung.  

Genes upregulated in response to HPAI in the ileum were related to metabolism and 

transport, while inflammatory response was downregulated at 1dpi (Supplemental Figure 

S6). Downregulated pathways at 1dpi included IL-6, IL-9 and neuro-inflammation signalling 

pathways (Supplemental Figure S6). In the quail lung many genes were downregulated after 

HPAI infection (Supplemental File S9). At 3dpi, most downregulated pathways and terms 

were linked to immune system processes. GO terms with the highest fold enrichment in 

downregulated genes at this time included T and B cell proliferation, TNF signalling 

pathway, TLR pathway and IFN-G production (Supplemental File S10). Pathways 

downregulated included both Th1 and Th2 pathways, T cell, B cell and macrophage 

signalling pathways (Supplemental Figure S7). This indicates that crucial immune 

responses in quail, are downregulated in ileum, and particularly in the lung at day 3, 

following HPAI infection. 

To compare the response of quail, duck and chicken, clustering of gene counts was 

examined using BioLayout 3D (Theocharidis et al. 2009). This revealed a cluster of 189 

genes that were strongly upregulated at 1dpi in the duck, which showed no response in 

chicken and quail (Supplemental Table S3). This cluster was dominated by RIG-I pathway 

and IFN response genes including IFNG, DDX60, DHX58, IRF1, IRF2, and MX1. Pathways 

associated with this cluster includes MHCI processing and death receptor signalling (Fig. 4). 

Thus, the lack of this early anti-viral response may be key to the susceptibility of Galliformes 

to HPAI.  
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To further compare the responses between the three species, enrichment of pathways in 

each species was examined (Fig. 5). This revealed very few commonly regulated pathways 

between the three species. However, at 1dpi in the ileum and 3dpi in the lung there were 

many pathways that were downregulated in the quail, not altered in chicken, and upregulated 

in the duck. In the ileum at 1dpi, this included pattern recognition and death receptor 

signalling. In the lung at 3dpi this involved host of immune related pathways including 

production of NOS by macrophages, pattern recognition, B and T cell signalling and NK-KB, 

IL8 and IL2 signalling. 

The proportion of genes commonly regulated between quail, chicken and duck to HPAI 

infection was also examined (Fig. 6). Consistent with the heatmap comparison (Fig. 5), the 

response of chicken, quail and duck were largely unique, with few genes commonly 

differentially expressed. There was a large set of genes that were upregulated in duck, while 

being downregulated in quail at 3dpi, in both ileum and lung.  In lung these genes were 

related primarily to innate immune system pathways, including pattern recognition pathways, 

cytokine production, leukocyte adhesion, TNF production, interferon production, B cell 

signalling and response to virus (Supplemental File S10). Genes with the greatest 

differential expression included RSAD2 which inhibits viruses including influenza, IFIT5 

which senses viral RNA and OASL which has antiviral activity. These differences further 

highlight that the anti-viral immune response is dysregulated in quail. Additionally in both 

ileum and lung the apoptosis pathway was enriched in duck, but not quail (Supplemental 

File S10). Apoptosis is known to be a critical difference in the response of chickens and 

ducks to HPAI infection (Kuchipudi et al. 2010). 

Lastly, we examined the response of key families involved in influenza and immune 

response, focussing on the lung (Supplemental Table S4 and Supplemental File S11). 

IFTIM genes have previously been found to have a crucial role in HPAI resistance (Smith et 
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al. 2015) and may block AIV from entering cells (Amini-Bavil-Olyaee et al. 2013). 

Consistent with previous findings in the chicken (Smith et al. 2015), quail showed no 

significant upregulation of IFTIM genes, while these genes in duck were strongly 

upregulated, (Supplemental Table S4). TLRs and MHC receptors are involved in 

recognition of foreign molecules and triggering either an innate (TLR) or adaptive (MHC) 

immune response. TLR3, 4 and 7, which bind viral RNAs, were upregulated in response to 

LPAI in quail. A reversal was seen in response to HPAI, with TLR4, and 7 substantially 

downregulated. Likewise, genes of both MHC class I and II were upregulated in response to 

LPAI and downregulated in response to HPAI. By comparison there was no perturbation of 

TLR and MHC genes in chicken and upregulation of class I genes in duck. The quail seems 

to have a highly dysfunctional response to HPAI infection with key innate and adaptive 

immune markers downregulated at 3dpi, which contrasts with the strong immune response 

mounted by the duck and minimal immune response in the chicken. 

In conclusion, we found that quail have a robust immune response to infection with 

LPAI, allowing them to survive the infection. However, they show dysregulation of the 

immune response after infection with HPAI, and this may explain their susceptibility to HPAI 

strains. IFITM response was not seen against HPAI while genes associated with apoptosis 

were downregulated, potentially allowing the virus to easily enter cells and spread early in 

infection. Antiviral and innate immune genes, including those involved in antigen 

recognition, immune system activation, and anti-viral responses were downregulated at 3dpi, 

which would prevent an effective immune response and viral clearance once infection is 

established. This study provides crucial data that can be used to understand the differing 

response of bird species to AIV, which will be critical for managing and mitigating these 

diseases in the future. 
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Figure 4: Enriched pathways in a cluster of genes highly expressed in duck lung after HPAI 

infection 
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Figure 5: Heat-map comparison between pathways upregulated (orange) and downregulated 

(orange) in quail, chicken and duck, in ileum day 1 (A), ileum day 3 (B), lung day 1 (C) and 

lung day 3 (D). 
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Figure 6: Proportion of genes commonly regulated between quail and chicken or duck to 

H5N1 infection on day 3 in ileum (A) and lung (B) 

 

DISCUSSION 

Here we describe the assembly, annotation and use of a high-quality quail genome, an 

important avian model in biological and biomedical research. This genome will be crucial for 

future avian genome comparative and evolutionary studies, and provides essential genetic and 

genomic reference information, molecular information for making precise primers and 
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nucleic acid probes, and accurate perturbation reagents including morpholinos, RNA 

inactivation tools, and CRISPR-Cas9 constructs. We have demonstrated the utility of this 

genome in both infectious disease and behavioural research providing further confirmation of 

the importance of quail as a research model, and for its role in agricultural and animal health 

studies. Specifically, the availability of this genome has allowed us to make significant 

discoveries in the unique response of quail to highly pathogenic avian influenza infection, 

helping elucidate the basis for extreme susceptibility seen in this species. It has also allowed 

us to identify and confirm genes and genomic regions associated with social behaviour, 

showing many similarities to genes associated with autism in humans and thus represents a 

possible biomedical model for autism. Furthermore, we have shown that genome-wide 

transcriptomics using this genome facilitated further insights and hypothesis into the 

mechanism of photo-periodism in avian seasonal biology. Moving forward, the availability of 

a high-quality quail genome will facilitate the study of diverse topics in both avian and 

human biology, including disease, behaviour, comparative genomics, seasonality and 

developmental biology.  

 

METHODS 

Whole Genome Sequencing and Assembly 

To facilitate genome assembly by avoiding polymorphism, we produced an individual 

as inbred as possible. We started with a quail line previously selected for early egg 

production and having a high inbreeding coefficient (Minvielle et al. 1999) and four 

generations of brother-sister matings produced a dedicated line "ConsDD" (PEAT, INRA 

Tours, France). A 15 week-old male Coturnix japonica (id. 7356) was then selected from this 

line for the sequencing project. Genomic DNA was extracted from a blood sample using a 
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high-salt extraction method (Roussot et al. 2003). Our sequencing plan followed the 

recommendations provided in the ALLPATHS2 assembler (Maccallum et al. 2009). This 

model requires 45x sequence coverage of each fragment (overlapping paired reads ~180 bp 

length) from 3 kb paired end (PE) reads as well as 5x coverage of 8 kb PE reads. These 

sequences were generated on the HiSeq2500 Illumina instrument.  Long-reads used for gap 

filling were generated at 20x coverage on the same DNA source using a RSII instrument 

(Pacific Biosciences). The Illumina sequence reads were assembled using ALLPATHS2 

software (Maccallum et al. 2009) using default parameter settings and where possible, and 

scaffold gaps were closed by mapping and local assembly of long-reads using PBJelly 

(English et al. 2012). The Illumina long insert paired-end reads (3 kb and 8kb PE) were used 

to further extend assembled scaffolds using SSPACE (Boetzer and Pirovano et al. 2014). The 

draft assembly scaffolds were then aligned to the genetic linkage map (Recoquillay et al. 

2015) and the Galgal4.0 chicken reference (Genbank accession: GCA_000002315.2) to 

construct chromosome files following previously established methods (Warren et al. 2017).  

Finally, all contaminating contigs identified by NCBI filters (alignments to non-avian species 

at the highest BLAST score obtained), and all contigs < 200 bp were removed prior to final 

assembly submission.  

 

 Gene Annotation 

Specific RNA-seq data for the genome annotation was produced from the same animal 

used for the genome assembly. RNA was extracted from heart, kidney, lung, brain, liver, 

intestine, and muscle using Trizol and the Nucleospin® RNA II kit (MACHEREY-NAGEL), 

following the manufacturer’s protocol. 
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The Coturnix japonica assembly was annotated using the NCBI pipeline, including 

masking of repeats prior to ab initio gene predictions, for evidence-supported gene model 

building.  We utilized an extensive variety of RNA-Seq data to further improve gene model 

accuracy by alignment to nascent gene models that are necessary to delineate boundaries of 

untranslated regions as well as to identify genes not found through interspecific similarity 

evidence from other species. A full description of the NCBI gene annotation pipeline was 

previously described (Thibaud-Nissen et al. 2013). Around 8,000 lacked gene symbols from 

this pipeline, and these were further annotated manually by using BLAST searches using the 

corresponding sequences and extracting protein names from Uniprot. 

 

Comparative analyses 

A set of single copy, orthologous, avian-specific genes were selected from OrthoDB v. 

9 (Zdobnov et al. 2017) and their status (present, duplicated, fragment or missing) were tested 

with BUSCO v.3.0.2 (Waterhouse et al. 2017) in the Gallus gallus 5.0 and Coturnix japonica 

2.0 genomes. Ab initio gene predictions were done within the BUSCO framework using 

tBLASTn matches followed by avian specific gene predictions with Augustus v. 3.3 (Stanke 

et al. 2006). Gene status was assessed by running HMMER (Eddy 1998) with the BUSCO 

HMM profiles of the orthologous sequences. Comparative maps and breakpoint data were 

generated using AutoGRAPH (Derrien et al. 2007) using chicken and quail gff annotation 

files, using default settings. 

 

Endogenous retrovirus identification 

Endogenous retroviruses (ERVs) were identified in the Coturnix japonica 2.0 and 

Turkey 5.0 genome assemblies using the LocaTR identification pipeline (Mason et al. 2016) 
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and compared to a previous analysis of ERVs in the Gallus gallus 5.0 genome assembly 

(Warren et al. 2017). LocaTR is an iterative pipeline which incorporates LTR_STRUC 

(McCarthy and Donald 2003), LTRharvest (Ellinghaus et al. 2008), MGEScan_LTR (Rho et 

al. 2007) and RepeatMasker (http://repeatmasker.org) search algorithms.  

 

Sociability selection study 

The data and methods used have been described previously (Fariello et al. 2017). 

Briefly, two quail lines were used, divergently selected on their sociability (Mills and Faure 

1991): high social (HSR) and low social (LSR) reinstatement behaviour. A total of 10 

individuals from generation 50 of each quail line were sequenced after equimolar DNA 

pooling. Sequencing was performed (paired-ends, 100 bp) on a HiSeq 2000 sequencer 

(Illumina), using one lane per line (TruSeq sbs kit version 3). The reads (190,159,084 and 

230,805,732 reads, respectively, for the HSR and LSR lines) were mapped to the CoJa2.2 

genome assembly using BWA (Li and Durbin 2009), with the mem algorithm. Data are 

publicly available under SRA accession number SRP047364. Within each line, the frequency 

of the reference allele was estimated for all SNPs covered by at least 5 reads, using Pool-

HMM (Boitard et al. 2013). This analysis provided 13,506,139 SNPs with allele frequency 

estimates in the two lines. FLK values (Bonhomme et al. 2010) were computed for all these 

SNPs, and the local score method (Fariello et al. 2017) was applied to the p-value on single-

marker tests.  

 

Photoperiod study 

MBH tissue was collected as previously (Ikegami et al., 2015). Male 4-week old quail were 

obtained from a local dealer in Japan and kept under SD conditions (6L18D) for 4 weeks. At 
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8 weeks of age, quail were transferred to LD conditions (20L4D) and kept under LD 

conditions for 4 weeks to develop their testes. And then, 12 week-old LD quail were 

transferred to short day and low temperature (SL: 6L18D 9C) conditions for another 4 weeks 

to fully regress their testes. All samples were collected at ZT18. (Light onset is same for LD 

and SD and light offset was extended in LD group). RNA-Seq was performed using a TruSeq 

stranded mRNA prep (Revision E 15031047) with 125bp paired-end reads on a HiSeq 

Illumina 2500 with four replicates in each of the three conditions. 

Reads were quality (Phred>25) and adapter trimmed with trim galore (version 0.4.5). Tophat 

(version 2.1.0; Kim et al. 2013) with bowtie2 (version 2.2.6) was used to map reads to the 

quail genome (GCA_001577835.1 Coturnix japonica 2.0), using the NCBI annotation. We 

determined feature counts for gene loci using the featureCounts program (Liao et al. 2014) in 

the subread (version 1.5.0) package (Liao et al. 2013). Statistical analysis was performed 

using the limma package (Law et al. 2014; version 3.36.1) in the R programming 

environment (version 3.5.0). The trimmed mean of M-values normalization method (TMM) 

was used for normalisation with Voom for error estimation (Sup. Table 2). We retained gene 

loci with more than 10x coverage in three replicates in at least two conditions. A categorical 

least squared regression model was fitted using LD 23°C, SD 23°C, and SD 9°C conditions. 

Statistics for pairwise comparisons were then recalculated by refitting contrasts to the model 

for LD 23°C vs SD 23°C, LD 23°C vs SD 9°C and SD 23°C vs SD. The Benjamini Hochberg 

approach (Benjamini and Hochberg 1995) was used to estimate the false discovery rate. For 

reporting numbers of photoperiod significant genes, we applied thresholds of FDR <0.05, 

log2 CPM > 0, and absolute log2 fold change > 1. Temperature-dependent genes are reported 

as those with a photoperiod significant effect at either 23°C or 9°C and a significant effect 

when contrasting SD 9°C and SD 23°C at the same thresholds defined across photoperiods.   
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Influenza response study 

All experiments involving animals were approved by the Animal Care and Use 

Committee of St. Jude Children’s Research Hospital and performed in compliance with 

relevant policies of the National Institutes of Health and the Animal Welfare Act. All animal 

challenge experiments were performed in animal biosafety level 2 containment facilities for 

the LPAI challenges and in biosafety level 3 enhanced containment laboratories for the HPAI 

challenges. Viral challenges of quail, tissue collection, RNA extractions and sequencing were 

carried out as previously described for chicken (Smith et al. 2015). Briefly, fifteen mixed-sex 

quail were challenged with 106 EID50 intranasally, intratracheally, and intraocularly of LPAI 

A/Mallard/British Columbia/500/2005 (H5N2) in phosphate buffered saline (PBS). Fifteen 

quail were challenged with 101.5 EID50 intranasally, intratracheally, and intraocularly of 

HPAI A/Vietnam/1203/2004 (H5N1) in PBS. Mock infection control groups (n=12) were 

also inoculated, receiving an equivalent volume and route of administration with PBS. 

Animals were monitored daily for clinical signs. Lung and ileum samples were collected 

from all birds on 1dpi and 3 dpi. RNA extractions were performed using Trizol and 

QIAGEN’s RNeasy kit. For sequencing thirty-six cycle single-ended sequencing was carried 

out on the Genome Analyser IIx using Illumina v3 Sequencing by Synthesis kits. 

All quail as well as duck and chicken RNA-seq reads from the previous study (Smith et 

al. 2015) were analysed as follows. Ileum and lung RNAs were analysed from PBS infected 

control (3 samples from each of 1dpi and 3dpi), H5N1-infected (3 samples from each of 1dpi 

and 3dpi, except quail ileum 1dpi which had 2 samples) and H5N2-infected (3 samples from 

each of 1dpi and 3dpi). 251 million reads of 36 nucleotides in length were generated in total 
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for quail. Reads were quality checked using FastQC and trimmed for quality using Trim-

galore. Mapping was performed to the quail genome (GCA_001577835.1 Coturnix japonica 

2.0), chicken genome (GCA_000002315.3 Gallus_gallus-5.0) and duck (GCA_000355885.1 

BGI_duck_1.0) using Tophat2 (Kim et al. 2013) using default options. For quantification and 

differential analysis, the following pipeline was used. First transcripts were assembled and 

quantified using cufflinks (Trapnell et al. 2010), guided with the NCBI annotation for the 

relevant genome, and the multi-read correct option was used. The transcriptomes were 

merged using stringtie merge (Pertea et al. 2015) and cuffdiff (Trapnell et al. 2010) was used 

for differential analysis using default settings. To determine orthology between quail, duck 

and chicken genes, reciprocal BLAST searches were performed. For analysis of GO term 

enrichment the PANTHER overrepresentation test (Thomas et al. 2003) was used and for 

pathway analysis Ingenuity Pathway Analysis software (QIAGEN) was used. For clustering 

analysis BioLayout 3D (Theocharidis et al. 2009) was used using default settings except 1.4 

inflation for Markov clustering. 
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