213 research outputs found

    Characterization of the prokaryotic community associated with the giant barrel sponge, Xestospongia muta across the Caribbean

    Get PDF
    Sponges have long been known to be ecologically important members of the benthic fauna on coral reefs. Recently, it has been shown that sponges, and their symbiotic microbes, are also important contributors to the nitrogen biogeochemistry of coral reefs. Here, I investigate the ecology and physiology of the microbial community associated the ecologically dominant sponge, Xestospongia muta. A natural experiment was conducted with X. muta form three different locations (Florida Keys, USA; Lee Stocking Island, Bahamas, and Little Cayman, Cayman Islands) to compare nitrogen cycling and prokaryotic community composition. The dissolved inorganic nitrogen (DIN) fluxes of sponges were studied using nutrient analysis, stable isotope ratios, and isotope tracer experiments. Results showed that the fluxes of DIN were variable between locations but clearly showed that X. muta can be either a source or sink of DIN. Stable isotope values of sponge and symbiotic bacterial fractions indicate that the prokaryotic community is capable of taking up both NH4+ and NO3 --, and there is potential for translocation of labeled N from the symbiotic bacteria to the host. The prokaryotic community composition of X. muta, and the variability of this community across the Caribbean were quantified using 454 pyrosequencing of the 16S rRNA gene. Phlyogenetic analysis showed differences between the sponge prokaryotic community and the surrounding bacterioplankton. Additionally, both symbiont and bacterioplankton populations were different between locations. In addition to the recovery of many sequences from bacterial phyla commonly found in sponges, a diverse archaeal community was also recovered from X. muta including sequences representing the phyla Euryarchaeota and Thaumarchaeota. Transcriptomic analysis for X. muta and its symbionts revealed a similar prokaryotic community composition to the metagenetic analyses indicating an active and diverse symbiotic community. Additionally, gene specific analyses combined with preliminary metatranscriptome data indicate the presence of genes involved in nitrogen cycling including nifH (nitrogen fixation), amoA (ammonia oxidation), norB (denitrification), and nirK (denitrification). Nitrogen cycling in X. muta appears to be more complex than previous studies have shown. These results have important ecological implications for the understanding of host-microbe associations, and provide a foundation for future studies addressing the functional roles these symbiotic prokaryotes have in the biology of the host sponge and the nutrient biogeochemistry of coral reefs

    Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 5 (2017): e2870, doi:10.7717/peerj.2870.Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM) from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water), in samples exiting the sponge (exhalent seawater), and in samples collected just outside the reef area (off reef seawater). Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is needed to determine whether the impact of sponge DOM is greater in habitats with higher sponge cover and diversity. This work provides the first insight into the molecular-level impact of sponge holobiont metabolism on reef DOM and establishes a foundation for future experimental studies addressing the influence of sponge-derived DOM on chemical and ecological processes in coral reef ecosystems.This work was funded by 54 backers through the crowdfunding platform Experiment (https://experiment.com/projects/how-do-sponges-influence-the-availability-of-nutrients-on-coral-reefs)

    Trait-Based Comparison of Coral and Sponge Microbiomes

    Get PDF
    Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral, Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge, Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed in M. cavernosa, while in X. muta there was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation between the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host

    Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongatus CCMP 1631

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Society for Applied Microbiology for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 17 (2015): 3949–3963, doi:10.1111/1462-2920.12899.Photoautotrophic plankton in the surface ocean release organic compounds that fuel secondary production by heterotrophic bacteria. Here we show that an abundant marine cyanobacterium, Synechococcus elongatus, contributes a variety of nitrogen-rich and sulfur-containing compounds to dissolved organic matter. A combination of targeted and untargeted metabolomics and genomic tools was used to characterize the intracellular and extracellular metabolites of S. elongatus. Aromatic compounds such as 4-hydroxybenzoic acid and phenylalanine, as well as nucleosides (e.g., thymidine, 5’-methylthioadenosine, xanthosine), the organosulfur compound 3-mercaptopropionate, and the plant auxin indole 3-acetic acid, were released by S. elongatus at multiple time points during its growth. Further, the amino acid kynurenine was found to accumulate in the media even though it was not present in the predicted metabolome of S. elongatus. This indicates that some metabolites, including those not predicted by an organism’s genome, are likely excreted into the environment as waste; however, these molecules may have broader ecological relevance if they are labile to nearby microbes. The compounds described herein provide excellent targets for quantitative analysis in field settings to assess the source and lability of dissolved organic matter in situ.This project was funded by the Gordon and Betty Moore Foundation through Grant #3304 to E. Kujawinski.2016-07-0

    A phosphate starvation response gene (psr1-like) is present and expressed in Micromonas pusilla and other marine algae

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fiore, C. L., Alexander, H., Soule, M. C. K., & Kujawinski, E. B. A phosphate starvation response gene (psr1-like) is present and expressed in Micromonas pusilla and other marine algae. Aquatic Microbial Ecology, 86, (2021): 29–46, https://doi.org/10.3354/ame01955.Phosphorus (P) limits primary production in regions of the surface ocean, and many plankton species exhibit specific physiological responses to P deficiency. The metabolic response of Micromonas pusilla, an ecologically relevant marine photoautotroph, to P deficiency was investigated using metabolomics and comparative genomics. The concentrations of some intracellular metabolites were elevated in the P-deficient cells (e.g. xanthine, inosine), and genes involved in the associated metabolic pathways shared a predicted conserved amino acid motif in the non-coding regions of each gene. The presence of the conserved motif suggests that these genes may be co-regulated, and the motif may constitute a regulatory element for binding a transcription factor, specifically that of Psr1 (phosphate starvation response). A putative phosphate starvation response gene ( psr1-like) was identified in M. pusilla with homology to well characterized psr1/ phr1 genes in algae and plants, respectively. This gene appears to be present and expressed in other marine algal taxa (e.g. Emiliania huxleyi) in field sites that are chronically P limited. Results from the present study have implications for understanding phytoplankton taxon-specific roles in mediating P cycling in the ocean.This research was funded by the Gordon and Betty Moore Foundation through Grant GBMF3304 to E.B.K., and it was partially supported by a grant from the Simons Foundation (Award ID 509034 to E.B.K.)

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV

    Get PDF
    Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with pT0.5p_{\rm T}\geq0.5 GeV/c in η0.8|\eta|\leq0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (NchN_{\rm ch}) is reported for events with different pTp_{\rm T} scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low NchN_{\rm ch}, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean pTp_{\rm T} with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16, published version, figures from http://aliceinfo.cern.ch/ArtSubmission/node/308

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388
    corecore