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Abstract 

Photoautotrophic plankton in the surface ocean release organic compounds that fuel 

secondary production by heterotrophic bacteria. Here we show that an abundant marine 

cyanobacterium, Synechococcus elongatus, contributes a variety of nitrogen-rich and 

sulfur-containing compounds to dissolved organic matter. A combination of targeted and 

untargeted metabolomics and genomic tools was used to characterize the intracellular and 

extracellular metabolites of S. elongatus. Aromatic compounds such as 4-hydroxybenzoic 

acid and phenylalanine, as well as nucleosides (e.g., thymidine, 5’-methylthioadenosine, 

xanthosine), the organosulfur compound 3-mercaptopropionate, and the plant auxin 

indole 3-acetic acid, were released by S. elongatus at multiple time points during its 

growth. Further, the amino acid kynurenine was found to accumulate in the media even 

though it was not present in the predicted metabolome of S. elongatus. This indicates that 

some metabolites, including those not predicted by an organism’s genome, are likely 

excreted into the environment as waste; however, these molecules may have broader 

ecological relevance if they are labile to nearby microbes. The compounds described 

herein provide excellent targets for quantitative analysis in field settings to assess the 

source and lability of dissolved organic matter in situ. 
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Introduction 

 

Dissolved organic matter (DOM) comprises one of the largest reservoirs of 

reduced carbon on the planet (Hedges, 2002).  This organic carbon includes a complex 

mixture of compounds ranging from high molecular weight colloidal material (Amon and 

Benner, 1994) to free amino acids and simple carbohydrates (Granum et al., 2002).  It is 

within this dissolved milieu that microbial interactions (Grossart and Simon, 2007), 

acquisition of specific compounds (Ito and Butler, 2005), and microbial growth (Romera-

Castillo et al., 2011) all take place (reviewed by Kujawinski (2011)).  In order to 

constrain the flux of organic nutrients through the dissolved pool, it is critical to 

characterize this material at the molecular level, and to assess the influence of different 

microbes on DOM composition. 

Phytoplankton release DOM as a byproduct of photosynthetic carbon fixation and 

this material contributes significantly to the biologically-available organic carbon and 

nitrogen in the ocean (Nagata and Kirchman, 1992; Kaiser and Benner, 2008). 

Phytoplankton-derived DOM is used as an energy source and for growth by microbial 

communities (Moreira et al., 2011; Nelson and Carlson, 2012), particularly heterotrophic 

bacteria (Cole et al., 1982; Kaiser and Benner, 2008).  Further, the composition of 

phytoplankton exudates influences microbial community structure over spatial and 

temporal gradients (Cottrell and Kirchman, 2000; Nelson and Carlson, 2012; Landa et al., 

2013).  Investigations of DOM released by phytoplankton have shown that its 

composition is quite variable and is influenced by phylogeny (Romera-Castillo et al., 

2011; Becker et al., 2014) and growth conditions (Grossart and Simon, 2007; Baran et 

al., 2011).   
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Studies with diatoms and flagellated eukaryotes have documented the exudation 

of macromolecules (Nagata and Kirchman, 1992) and polysaccharides (Aluwihare and 

Repeta, 1999) within the high-molecular-weight fraction of DOM (>1000 Da).  In 

contrast, the composition of labile low-molecular weight (LMW) components of DOM 

remains poorly constrained due to its heterogeneous nature and the challenges associated 

with extracting this material from high salt solutions. The pool of labile LMW DOM is a 

small fraction of the total LMW DOM pool (Amon and Benner, 1996; Nagata et al., 

2003; Hama et al., 2004). Nevertheless, this fraction is of particular interest because these 

‘small’ molecules comprise metabolites that are transferred among members of microbial 

consortia (e.g., Durham et al., 2015).  Biochemical classes of labile LMW DOM such as 

hydrolyzed amino acids and sugars have been quantified in seawater using several 

techniques (e.g., Kaiser and Benner, 2000; Kaiser and Benner 2009), providing insight 

into source and turnover of these components. There are still gaps in our knowledge, 

however, regarding the molecular composition of labile LMW DOM derived from 

ecologically relevant taxa of phytoplankton and the factors that influence the turnover of 

this material. In particular, more information is needed on the identities of DOM 

molecules that are important for microbe-microbe interactions (e.g., signaling molecules, 

exudates that are utilized by other microbes) and microbe-DOM interactions (e.g., labile 

metabolites).  Identification of such ecologically relevant components of labile 

phytoplankton-derived DOM will then allow for quantification of the turnover of these 

components by microbial communities, which is critical for building predictive global 

carbon cycle models (Follows et al., 2007). 

Recent advances in mass spectrometry and computational tools are providing an 

avenue for exploring phytoplankton-derived DOM on a molecular level. Generally 

termed ‘environmental metabolomics,’ the goals of these studies are typically the 
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quantification of known metabolites (“targeted metabolomics”) or the discovery of new 

metabolites (“untargeted metabolomics”; e.g., Patti et al., 2012). In untargeted 

metabolomics studies, complex datasets of thousands of mass features are generated, but 

statistical analyses (Rosselló-Mora et al., 2008; Kujawinski et al., 2009), stable isotope 

labeling (Baran et al., 2010), or comparative approaches (Becker et al., 2014) can be 

applied to uncover patterns in the data and to obtain features of interest for metabolite 

identification.  After identification, these features can be quantified using targeted 

metabolomics methods in either intracellular or extracellular metabolite mixtures to 

discern their metabolic role and/or their temporal dynamics (e.g., Ankrah et al., 2014). 

Here, we use targeted and untargeted metabolomics to characterize DOM released from 

cyanobacterial cultures.  

Cyanobacteria such as Synechococcus spp. are abundant primary producers in the 

photic areas of the ocean and are important in global carbon cycling (Li, 1994; Scanlan 

and West, 2002). Synechococcus elongatus in particular, is found in pelagic and coastal 

waters (Seymour et al., 2010; Muralitharan and Thajuddin, 2011) and comprises 

approximately 10% of the Synechococcus spp. genes recovered in the global ocean 

sampling data set (Rusch et al., 2007; Seymour et al., 2010). The prevalence of S. 

elongatus in surface waters implies that this organism constitutes a reliable source of 

labile DOM in the environment and thus is an excellent candidate for culture-based 

experiments aimed at characterizing excreted ecologically relevant metabolites. 

We paired targeted and untargeted metabolomics techniques to characterize LMW 

DOM released from Synechococcus elongatus CCMP 1631 during different stages of 

growth.  Intracellular and extracellular metabolites were extracted from cultures of S. 

elongatus and analyzed using high-performance liquid chromatography (LC) coupled to 

triple stage quadrupole (QQQ; targeted) and Fourier transform ion cyclotron resonance 
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(FT-ICR; untargeted) mass spectrometers. Biologically relevant mass features were 

identified from untargeted data and compared to predicted metabolomes generated from 

several genomes representing Synechococcus spp. and other bacterioplankton and 

phytoplankton species. With these methods, we have identified and quantified 

compounds not previously associated with the metabolic profile of S. elongatus. The 

dynamics of these components have important implications for the turnover of DOM and 

for microbial interactions in situ. The metabolites highlighted here represent compounds 

that should be prioritized for further functional characterization. 

 

Results 

 

Growth of Synechococcus elongatus CCMP 1631 

 

Cultures of S. elongatus exhibited lag, exponential, and decline growth phases, 

and sampling was performed during each of the different growth stages (Figure S2). 

Fluorescence microscopy showed an occasional small non-auto-fluorescent cell in some 

cultures of S. elongatus (average of 0.002 non-auto-fluorescent putative cells per S. 

elongatus cell; see SI); however, these were in low abundance relative to the 

cyanobacteria and thus were unlikely to significantly alter the outcome of the experiment. 

No-cell controls were clear of cells except for day 15, which had approximately 9 x 106 

cells ml-1, which is at least 100-fold less than any of the cultures.  The no-cell control 

from day 15 was more similar to the other control samples than to the culture samples in 

terms of metabolite composition and concentration across all quantified metabolites, 

lending support for the use of the day-15 control in the analysis.  Inorganic nutrients were 

not limiting for S. elongatus at the start of the experiment and decreased over time (Table 

S2). Total organic carbon (TOC) ranged from approximately 170 to 300 μM in the 
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cultures. The extraction efficiencies of organic carbon from the extracellular media by 

solid-phase extraction (SPE) were lower than expected (3-13%; Table S2), but are similar 

to previous studies using SPE of phytoplankton-released DOM (Landa et al., 2014; 

Becker et al., 2014). Additionally, the extraction efficiencies of individual compounds 

within the fraction of LMW DOM targeted in this study are likely much higher based on 

nearly 100% recovery of several deuterated organic compounds from seawater using this 

SPE method (Johnson, Kido Soule, and Kujawinski, unpublished). 

 

Metabolic profile of Synechococcus elongatus CCMP 1631 

We generated metabolic profiles for S. elongatus along a growth curve. At each 

time point, we quantified intra- and extracellular concentrations of pre-chosen 

metabolites. Simultaneously, we analyzed intra- and extracellular profiles of all 

detectable metabolites. In these untargeted datasets, data was organized into mass 

features, where a feature is defined by a unique combination of mass-to-charge (m/z) ratio 

and a retention time. The focus of this report is the composition and relative 

concentrations of extracellular metabolites. However, results of the intracellular 

metabolite analysis provide valuable complementary insights into the physiology of S. 

elongatus, and are highlighted where they relate to the production or utilization of 

extracellular compounds or for comparative analysis.   

In the untargeted analysis, metabolic profiles of intra- and extracellular fractions 

were significantly different based on analysis of similarity (ANOSIM; R = 1, p = 0.001 

(positive and negative); Figure 1).  There was a large overlap of mass features, however, 

with 98% (positive mode) and 90% (negative mode) of features detected in both intra- 

and extracellular factions.  The intracellular profiles showed some separation by time in 
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positive mode (ANOSIM; R=0.509, p=0.006; Figure 1A), but no trend in negative mode 

(ANOSIM, R=0.124, p=0.16; Figure 1C).   

Cluster analysis of the targeted intracellular data showed minimal clustering of 

samples by time. For example, one sample each from days 0 and 8 did not cluster with 

their corresponding replicates, although the rest of the early time points clustered together 

(Figure 2). Additionally, variability in the composition and concentrations of intracellular 

metabolites was observed across time points (Figure 2). Diverse metabolites were 

detected at relatively high concentrations within the quantified intracellular compounds 

including several amino acids, 5’-adenosine monophosphate (AMP), and several 

carbohydrate derivatives (Table 1). The polyamine, spermidine, was the dominant and 

most consistent metabolite within the quantified intracellular compounds (Figure 2), and 

the amino acids involved in polyamine synthesis clustered together with spermidine 

(Figure 2, cluster A). Some compounds of interest were detected in the intracellular 

fraction only at low concentrations including N-acetylchitobiose (chitobiose) and 

dimethylsulfoniopropionate (DMSP).   

Within the targeted extracellular metabolic dataset, thymidine, tryptophan, 

phenylalanine, and 4-hydroxybenzoic acid comprised the dominant features (Figure 3; 

Table 2). The pyrimidine nucleoside, thymidine, increased in concentration over time 

when normalized to volume and to TOC (Figure S3).  Succinic acid and inosine were 

present at early time points but below detection after day 8 or 10.  Some compounds 

including 3-mercaptopropionate, indole 3-acetic acid (IAA), 5’-methylthioadenosine 

(MTA), and N-acetylglutamic acid were detected at relatively low but consistent levels 

throughout the experiment.  IAA is typically considered a catabolic product of tryptophan 

and extracellular concentrations of tryptophan and IAA were significantly correlated 

(Pearson’s r = 0.94, p-value <0.01; Figure S4).  Metabolites of interest in the dissolved 



 9 

fraction could be grouped as to whether they increased throughout the experiment, or 

were variable in TOC-normalized concentration over time (Table 2; Figure 3). The 

removal of metabolites from the media may be due to either uptake by S. elongatus or 

abiotic degradation.  More experiments are needed to determine the sink for these 

metabolites. 

 

Characterization of DOM by untargeted analysis 

 

Several dissolved metabolites were observed in both the targeted and untargeted 

datasets.  These metabolites exhibited a similar trend in each dataset (i.e., increased or 

decreased over time) as shown by the correlation between tryptophan concentration 

determined in the targeted method and the peak area of the mass feature identified as 

tryptophan in the untargeted method (Figure 4, Spearman’s ρ = 0.81, p-value < 0.01).  

Untargeted metabolic profiles from extracellular fractions showed a shift over time and 

this was supported by ANOSIM (Figure 1A (positive): R=0.702, p=0.001; Figure 1C 

(negative): R=0.788, p=0.002).  Approximately 25% (646 peaks (negative) and 413 peaks 

(positive)) of all extracellular features (Table 3) increased over time when normalized to 

TOC and had an average peak area greater than the average peak area for the cell-free 

controls. Of the features that increased over time, approximately 10% (67 (negative) and 

40 (positive)) had corresponding MS/MS (fragmentation) spectra, which facilitate 

putative identification and thus were selected for further investigation. Additional 

features were selected if the mass of the feature matched the exact mass of a metabolite in 

one of the predicted metabolomes (Table 3).  Altogether, 21 features of interest, which 

generally increased in peak area over time, were putatively identified or confirmed in the 

untargeted dataset (Table S3; see SI).  
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One such feature was identified as kynurenine, a tryptophan oxidation product 

and a predicted metabolite of Ruegeria pomeroyi, a heterotrophic α-proteobacterium in 

the Roseobacter clade, and Thalassiosira pseudonana, a centric diatom.  The presence of 

kynurenine in the S. elongatus dataset was confirmed with an authentic standard analyzed 

with our methods. Kynurenine accumulated over time in the extracellular fraction even 

when normalized to TOC (as a proxy for biomass; Figure 5).  It was also observed 

intracellularly at variable concentrations over time (data not shown). Comparative 

genomics analysis was used to investigate whether sequenced Synechococcus spp. 

contain the enzymes responsible for oxidation of tryptophan to kynurenine (Table S4, SI), 

but this analysis did not yield any potential orthologous genes. 

 

Discussion 

 

Intracellular metabolites 

 

 Phytoplankton are considered the major producers of DOM in the surface ocean, 

the composition of which can vary (Myklestad, 1995; Biersmith and Benner, 1998; 

Becker et al., 2014) due to species-based differences in metabolism. In order to determine 

the impact of the metabolism of the cosmopolitan cyanobacterium, Synechococcus 

elongatus, on DOM composition, as well as to quantify diverse and unexpected 

metabolites associated with S. elongatus, we applied both targeted and untargeted 

metabolomics techniques to analyze intra- and extracellular metabolites derived from 

cultures of S. elongatus. Few metabolomics studies have examined both intra- and 

extracellular metabolite profiles of marine microbes (Baran et al., 2010; Rosselló-Mora et 

al., 2008; Longnecker et al., 2015). The intracellular dataset described here thus provided 

unique insight into the metabolism of S. elongatus and highlighted specific compounds 
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with undefined functional roles as targets for future physiological and biochemical 

studies.  

We expected the intracellular metabolites to be more variable in concentration 

and composition over time reflecting shifts in metabolism at different stages of growth. 

This overall variability was observed in the intracellular profile derived from the 

untargeted analyses and to some extent in the targeted intracellular analyses. The targeted 

intracellular analyses, however, also showed that a few metabolites were consistently 

detected at relatively high concentrations or steadily increased or decreased over time 

(Table 1).  For example, the most prominent intracellular metabolite in the targeted 

method was the polyamine spermidine, sometimes comprising ~40% of the total 

quantified metabolites in a sample.  Polyamines are known to have a wide range of 

functions in the cell (Tabor and Tabor, 1984; Panagiotidis et al., 1995), and the relatively 

high and stable concentrations in the intracellular metabolite samples suggests that 

spermidine has a central role in the metabolic functioning of S. elongatus.  While 

spermidine could not be quantified in the extracellular fraction for analytical reasons, a 

side product of spermidine production, 5’-methylthioadenosine (MTA) was observed to 

accumulate in the media.  This suggests that MTA is not entirely recycled back into 

central metabolism (i.e., via a methionine salvage pathway) and may be released through 

a regulatory mechanism.  Furthermore, many of the amino acids involved in spermidine 

biosynthesis clustered together (Figure 2), which suggests that this pathway affects 

concentrations of all these compounds.  

 Other notable intracellular metabolites include the sulfur-containing osmolyte 

dimethylsulfoniopropionate (DMSP), typically associated with eukaryotic algae.  

Interestingly, the DMSP degradation intermediate, 3-mercaptopropionate, which also 

contains sulfur, was detected at low concentrations intracellularly and extracellularly. 
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Synechococcus elongatus might be catabolizing DMSP to 3-mercaptopropionate 

(Visscher et al., 1994; Yoch, 2002). Although this is the most likely metabolic source for 

3-mercaptopropionate, other metabolic pathways may generate 3-mercaptopropionate 

(Kiene et al., 1990) and further experiments are needed to determine the source of 3-

mercaptopropionate in S. elongatus. Cyanobacteria have been shown to produce DMSP 

(Jonkers et al., 1998), which can function as both an osmolyte and a scavenger of reactive 

oxygen species in marine algae (ROS; Sunda et al., 2002).  While release of DMSP could 

not be quantified here (due to method constraints), other studies have indicated that 

cyanobacteria are likely to be an insignificant source of DMSP relative to other marine 

algae (Keller, 1989).  Nonetheless, the release of 3-mercaptopropionate, and potentially 

DMSP, even at low concentrations could be a consistent source of organosulfur 

metabolites for microbes inhabiting the same environment as S. elongatus.  

Another interesting metabolite in S. elongatus was chitobiose in the intracellular 

fraction.  As the samples were grown in artificial seawater and this molecule was not 

detected in the cell-free controls, we must conclude that S. elongatus is making 

chitobiose.  The functional role of chitobiose in S. elongatus is not known but it may be 

exported to the outer membrane and/or function in some structural capacity.   

 

Extracellular metabolites 

 

 Characterization of the molecules released by phytoplankton can be difficult due 

to the complex nature of DOM (Nagata, 2008) and the rapid turnover of small 

compounds (Rich et al., 1996).  However, these small labile compounds, which are a 

quantitatively small fraction of LMW DOM, are important in the flux of organic nutrients 

through the dissolved pool and in supporting bacterioplankton populations.  Here, we 
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identified several ecologically and biochemically relevant metabolites released by 

Synechococcus elongatus.  

The fact that there is a large overlap in features between the intracellular and 

extracellular metabolic profiles suggests that the differences identified by ANOSIM are 

driven by the relative concentrations of the overlapping metabolites. These differences 

are influenced by 1) the amount of metabolite released and 2) the degree to which each 

metabolite is subsequently utilized by S. elongatus. Thus, while most of the metabolites 

produced by S. elongatus are released into the environment, only a subset accumulates to 

significant concentrations. 

 Major features observed in the targeted analysis of the extracellular metabolite 

fractions can, in part, define the influence of S. elongatus on DOM composition.  One 

example is the nucleoside thymidine, a dominant feature in the extracellular fraction.  

The genomes of Synechococcus species do not contain the gene that encodes for 

thymidine kinase, the enzyme that phosphorylates thymidine to thymidine 

monophosphate (TMP) for incorporation into DNA.  Instead, the gene encoding for the 

enzyme thymidylate synthase, which converts uridine monophosphate (UMP) to TMP, 

was present in the investigated genomes of Synechococcus.  Therefore, any thymidine 

that is released by DNA degradation, or by hydrolysis of TMP, is excreted from S. 

elongatus cells and may provide a valuable source of thymidine for heterotrophic bacteria.  

Thymidine incorporation ([3H]-thymidine) has been used to quantify bacterial production, 

as many heterotrophic bacteria are known to transport and incorporate thymidine into 

DNA (Fuhrman and Azam, 1982; Zweifel et al., 1993).  Nucleic acids, as well as 

triphosphate nucleotides (i.e., ATP, GTP) have been identified as an important 

component in DOM (Karl and Bailiff, 1984; Björkman and Karl, 2001); however, to our 

knowledge there are no published reports of thymidine concentrations in seawater. 
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 The aromatic amino acids phenylalanine and tryptophan were also major 

components in the extracellular fraction.  These compounds appeared to be both released 

and taken up by S. elongatus to different degrees.  Phenylalanine concentrations remained 

relatively steady, only increasing with increasing TOC.  This indicates that there is some 

degradation or uptake of phenylalanine that prevents this amino acid from accumulating 

in the media. Tryptophan increased in concentration initially but was not detected in the 

later time points, indicating this amino acid was released to the extracellular fraction but 

was then degraded or utilized by S. elongatus.  Tryptophan is energetically costly to 

synthesize (Barton et al., 2010) and the release of tryptophan and other aromatic 

compounds may constitute an important source of these molecules for nearby microbes. 

Whether there was uptake of amino acids by S. elongatus or abiotic degradation of these 

amino acids in the media cannot be resolved using our data. However, uptake of amino 

acids by Synechococcus spp. has been documented previously in culture (Baran et al., 

2011) and during in situ incubation experiments (Zubkov et al., 2003; Michelou et al., 

2007). Taken together, this information emphasizes the need for quantifying the 

autotrophic contribution to DOM turnover in order to improve models of the ocean 

carbon cycle.  

Tryptophan and phenylalanine have been quantified previously in seawater (0 – 

54 and 4 – 27 nM, respectively in surface water (< 100 m)) and their concentrations and 

distribution with depth indicate a link to surface water production (Yamashita and 

Tanoue, 2003; JØrgensen et al., 2011). These metabolites are also among a subset of 

amino acids considered to be important labile components of DOM (Yamashita and 

Tanoue, 2003), but the source of these amino acids has not been identified within the 

surface planktonic community. The work presented here provides an important step 



 15 

toward identifying ecologically relevant components of labile DOM and elucidating the 

microbial sources of these components in the ocean. 

Other minor components in the extracellular media may be ecologically important 

even at low concentrations, particularly because they were detected at most or all time 

points.  For example, indole 3-acetic acid (IAA) has been characterized in symbiotic 

cyanobacteria associated with plants, although its functional role in free-living bacteria is 

not known (Sergeeva et al., 2002).  IAA from S. elongatus appears to be derived from 

tryptophan, based on the strong correlation between these two metabolites in our data.  

Additionally, while the full biochemical pathway linking the two metabolites remains 

uncharacterized, a gene encoding for a pyridoxal-dependent decarboxylase family protein 

was found in two Synechococcus genomes. This enzyme could potentially use tryptophan 

as a substrate (see SI), and highlights the potential of metabolomics studies for improving 

annotation of marine microbial genomes.  

The distribution and functional roles of IAA have been investigated in soil 

systems (Martens & Frankenberger, 1993 b). However, few studies have quantified IAA 

in seawater (Bentley, 1960; Maruyama et al., 1989; Mazur and Homme 1993) and these 

had limited spatial distributions for sampling. The released IAA may function as a 

signaling molecule or may simply be a waste product. There are several lines of evidence 

for a connection between the occurrence and concentration of IAA in seawater and 

mucus exudation by diatoms (Homme and Mazur, 1992; Mazur and Homme, 1993). The 

production of mucus has broader ecological implications as it can influence the flux of 

organic matter to the deep ocean (Riebesell et al., 1995; Turk et al., 2010) and the mucus 

itself consists of a rich matrix of phytoplankton exudates and polysaccharides (Myklestad, 

1995; Brussaard et al., 1996). The fact that S. elongatus releases IAA may mean that this 
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organism can influence mucus production by other phytoplankton, a hypothesis that 

should be addressed by future experimental studies.  

 Several mass features in the untargeted extracellular dataset were identified and 

confirmed with authentic standards (see SI).  Some of these compounds, such as 

xanthosine and tyrosine, may be released as metabolic overflow during photosynthesis 

(Behrends et al., 2009). Of particular interest was the mass feature identified as the amino 

acid, kynurenine, which clearly accumulated over time in the media.  When normalized 

to TOC, the peak areas of the mass feature still increased over time, suggesting that there 

is continual release of kynurenine over time and that there is little, if any, degradation.  

This would be expected if the compound were a waste product of a continuous process or 

of a constitutively active pathway.  In fact, a similar trend is produced when thymidine 

concentration is normalized to TOC, and as discussed above, thymidine is a waste 

product with no salvage pathway.   

 Genes homologous to known protein-coding genes involved in the kynurenine 

pathway of tryptophan catabolism (Kurnasov et al., 2003) were not detected in 

Synechococcus genomes.  However, several studies have reported modification of 

tryptophan residues in proteins of photosystem II (PSII), where the first step of the light 

reactions for photosynthesis take place (Sharma et al., 1997; Anderson et al., 2002; 

reviewed by Dreaden Kasson and Barry (2012)).  Anderson et al., (2002) detected 

kynurenine and other tryptophan oxidation products in the place of tryptophan residues in 

one of the PSII proteins (CP43) suggesting that these modifications are a result of 

reactive oxygen species generated during the light reactions.  Oxidation of tryptophan 

residues to N-formylkynurenine in the D1 protein by ROS generated during 

photosynthesis was also recently observed (Dreaden et al., 2011; Dreaden Kasson et al., 

2012).  The PSII proteins, particularly D1, are known to turn over rapidly relative to other 
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cellular proteins (Ohad et al., 1984) and the presence of these tryptophan oxidation 

products may be an indicator of ROS-damaged proteins (Anderson et al., 2002).  We 

hypothesize that tryptophan residues in the PSII proteins are oxidized to kynurenine by 

ROS, and that this kynurenine is released into the extracellular pool.   

 While Synechococcus do not have the ability to utilize kynurenine as a nitrogen or 

carbon source (see SI), the resulting release of kynurenine from the cell may make S. 

elongatus, and more generally Synechoccoccus spp., an important source of this amino 

acid to nearby heterotrophic bacteria.  Genetic evidence for the presence of the 

kynurenine pathway (Figure S8) in several different genera of bacteria was recently 

obtained using comparative genetics (Kurnasov et al., 2003).  In addition, the kynurenine 

pathway was found to be the major route of catabolism for added carbon in the form of 

L-tryptophan in an experiment with soil microbes (Martens and Frankenberger, 1993 a).  

The extent to which marine bacterioplankton utilize the kynurenine pathway as a 

catabolic source of carbon and nitrogen has not been investigated. Nevertheless, it may 

be important in some marine microbes and represents an intriguing area for further 

research.  

 We have shown that S. elongatus is a consistent source of nucleosides, amino 

acids, and organosulfur compounds to the dissolved organic pool.  Interestingly, many of 

the compounds released by S. elongatus in this study are not typically quantified in 

seawater, such as IAA, kynurenine, MTA, thymidine, 4-hydroxybenzoic acid, and 

xanthosine.  It is not clear, from these data, whether these compounds are excreted 

intentionally or leak passively through the semipermeable cell membrane.  Our 

observations of kynurenine and thymidine accumulation in the growth media, however, 

implicate intentional release for at least some metabolites, particularly waste products 

that cannot be salvaged.  Our results provide evidence for metabolites that are generated 
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during central metabolism and are released by the organism, but are not predicted by its 

genome and therefore would not normally be considered in the ecology of this organism.  

Nevertheless, compounds such as kynurenine could play important roles in the 

metabolism of other marine microbes expected to occur in the same communities as our 

target organism, S. elongatus, and thus constitute possible points of synergy within 

microbial communities.  In short, continually-released waste products may have an 

important role in microbial interactions with DOM.  All of the compounds described here 

are high-potential targets for in situ metabolomics analyses to further explore the source 

and turnover of metabolites within marine DOM.  Similar metabolomics studies with 

metabolically-diverse microbial taxa are needed to discover additional metabolites of 

biological importance in microbial consortia, including compounds that are generated by 

gene-independent processes. In this way, environmental metabolomics studies, such as 

described here, can provide needed complementary data to genomics and transcriptomics 

studies in order to elucidate the functional roles of diverse marine microbes. 

 

Experimental procedures 

 

Culture of Synechococcus elongatus CCMP 1631 

 

 All glassware was acid-cleaned and combusted at 450°C for at least 4 h.  

Synechococcus elongatus CCMP 1631 was purchased from the National Center for 

Marine Algae and Microbiota (Boothbay, ME, USA) and grown in 300 ml of L1-Si 

media (https://ncma.bigelow.org/algal-recipes) using Turks Island Salts as a base.  A 

starter culture in exponential phase was used to inoculate 12 flasks of media with 10% of 

the volume (30 ml).  Another six flasks contained only the media as cell-free controls.  
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The cultures were maintained at room temperature under a 12:12 light:dark regime (56 

μmol m-2 s-1) and were sampled at approximately 30 min into the light cycle, at each time 

point.  Cultures were grown for three weeks and samples were taken on days: 0, 2, 8, 10, 

15, and 17.  The initial samples (day 0) were taken at the time of the experiment setup.  

At each sampling point 750 μl, 40 ml, and 60 ml were removed for cell counts, TOC 

analysis, and nutrient analysis, respectively (SI). Potential contamination by heterotrophic 

bacteria was monitored with DAPI-stained cells of each time point. Briefly, 750 μl of 

culture was fixed with 75 μl buffered 37% formaldehyde (buffered with sodium borate) 

and frozen at -80°C. The fixed cells were stained with 4’,6-diamidino-2-phenylindole 

dihydrochloride (DAPI, 70 μg ml-1 final concentration) on Isopore membrane filters (0.2 

μm, Millipore). The filters were viewed with a Zeiss Axiostar plus microscope, where 25-

35 fields or at least 150 cells were counted (SI).  Synechococcus elongatus abundance 

(cells ml-1) of each sample was calculated from DAPI-derived counts by following the 

formula from (Wetzel and Likens, 1991). The abundance estimates based on cell counts 

were used to calculate a growth curve of S. elongatus during the experiment and we could 

clearly differentiate separate stages of growth (Figure S2). Cell counts were not used in 

data analysis (i.e., data normalization), however, due to the presence of cell clumps that 

made obtaining accurate counts difficult.  

 

Metabolite extractions 

 

 Extraction of metabolites from the S. elongatus cultures followed the overview 

given in Figure S1. Each culture was filtered through a 0.2 μm PTFE filter (Omnipore, 

Millipore, MA, UA).  Filters were stored at -80°C until extraction using a method 

adapted from (Rabinowitz and Kimball, 2007).  Intracellular metabolites from the filter 
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were extracted in 500 μl of cold 40:40:20 acetonitrile:methanol:water with 0.1 M formic 

acid. The solvent and filter mix was sonicated for 10 minutes and the extract was 

centrifuged at 20,000 × g for 5 minutes.  The supernatant was transferred to a new vial 

and neutralized with 6 M ammonium hydroxide.  Intracellular extracts were dried in a 

vacufuge to near dryness and redissolved in 450 μl water and 50 μl acetonitrile. 

Deuterated biotin was added to each sample as an HPLC injection standard (biotin-(ring-

6,6-d2), final concentration 0.05 μg ml-1).  At this stage, 100 μL of the intracellular 

extract was used for targeted metabolomics analysis.  

A portion of the remaining intracellular extract (250 μl) was processed using solid 

phase extraction (SPE) with 50 mg/ 1 cc PPL cartridges (BondElut, Agilent, Santa Clara, 

CA, USA) as described previously (Dittmar et al., 2008) to remove salt.  The eluted 

metabolite extract was dried down and redissolved in 250 μl of 95:5 water:acetonitrile 

and 200 μl of the extract was removed for untargeted metabolomics analysis.  A pooled 

sample was also made consisting of equal amounts of each intracellular extract. 

The filtrate for each sample (229 ml), representing the extracellular metabolite 

fraction, was processed using SPE as described above but with 1 g / 6 cc cartridges. The 

dried extracellular metabolite extract was redissolved in 500 μl of 95:5 water:acetonitrile 

for both targeted and untargeted metabolomics analysis. The PPL protocol is the most 

popular method for DOM extraction (e.g., Zhang et al., 2014; Perminova et al., 2014) 

and while there is bias in the components that are retained by any extraction method, the 

chosen method allows for comparison of metabolite data with other studies (Kido Soule 

et al., submitted).  

 

Instrument methods 
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 Intracellular and extracellular metabolites for the targeted metabolomics method 

were analyzed within 24-48 hours of extraction by high-performance liquid 

chromatography (Thermo PAL autosampler and Accela pump) coupled to a triple stage 

quadrupole mass spectrometer (TSQ Vantage, Thermo Fisher Scientific, MA, USA) via a 

heated electrospray ionization (H-ESI) source operated in both positive and negative ion 

modes.  Selected reaction monitoring (SRM) conditions were optimized for each 

metabolite standard (n = 84, Table S1).  Compound separation was achieved on a Synergi 

Fusion-RP column (4 μm, 2.0 x 150 mm; Phenomenex) with a guard column, heated to 

35°C.  The extracts were gradient-eluted at 250 μl min-1 using (solvent A) water with 

0.1% formic acid and (solvent B) acetonitrile with 0.1% formic acid (hold 5% B for 2 

min, ramp 5-65% B for 18 min, ramp 65-100% B for 5 min, and hold 100% B for 8 min; 

total run time = 40 min).  The column was equilibrated for 7.5 min prior to each 10-μl 

injection.   Milli-Q water blanks and a standard mix of metabolites were included in each 

analytical run.  Five-to-seven point manually-curated calibration curves for each standard 

(0.5 – 500 ng ml-1) were used to determine metabolite concentrations (XCalibur 2.0). 

Peak integrations for all samples were also manually curated and the resulting quality-

checked metabolite concentrations were then exported to Microsoft Excel. Absolute 

quantification of metabolites in our samples is not possible without internal standards for 

each metabolite. Instead, external standard curves were used to quantify the metabolites, 

resulting in potential underestimates of metabolite concentrations in the samples due to 

matrix effects (Taylor, 2005). Nevertheless, our method allows us to compare metabolite 

concentrations over time. 

 Extracted metabolites for untargeted analysis were analyzed with high-

performance liquid chromatography (Micro AS autosampler and Surveyor MS pump 

plus) coupled via ESI to a hybrid linear ion trap-FT-ICR mass spectrometer (7T LTQ FT 
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Ultra, Thermo Fisher Scientific).  Separate autosampler injections of 20 μl each were 

performed for positive and negative mode analyses.  The pooled sample was analyzed 

every six injections in both the targeted and untargeted metabolomics methods for quality 

control. The column, gradient, and flow rate were the same as described for the targeted 

method.  In parallel to MS acquisition in the FT-ICR cell (resolving power 100,000 at 

400 m/z), MS/MS data were collected at nominal mass resolution in the ion trap from the 

four features with the highest peak intensities in each scan. Data were collected in profile 

mode using XCalibur 2.0.7 and converted to centroid mode with msConvert (Chambers 

et al., 2012). 

 

Metabolomics data analysis 

 

 Quality-checked targeted metabolomics data were normalized to total metabolite 

biomass for the intracellular metabolites, and to filtrate volume or TOC for the 

extracellular metabolites. Figures were generated with R statistical software (v3.0.2; R 

Core Team; see SI) using TOC- or volume-normalized concentrations.  Extracellular 

mass features were normalized to TOC as an estimate of biomass and additionally to the 

volume filtered as these provide two views on the behavior of the metabolites in the 

extracellular media.  For example, if the concentrations of a metabolite were correlated to 

biomass then we would expect it to be stable over time when normalized to TOC. On the 

other hand, normalizing to volume shows the total amount released to the media over 

time. Normalized intracellular metabolite values used to generate the heatmap were 

standardized to the average concentration for each metabolite.  The Pearson product-

moment correlation coefficient was calculated to assess correlation between 

concentrations of tryptophan and indole 3-acetic acid from the extracellular metabolite 
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fraction.  The non-parametric Spearman’s rank correlation coefficient (Spearman’s rho) 

was used to estimate correlation between extracellular tryptophan concentrations from the 

targeted dataset and the peak area of the mass feature identified as tryptophan from the 

untargeted dataset. Only a subset of targeted metabolites (n=18) could be quantified in 

the extracellular fraction due to the others’ incompatibility with our solid-phase 

extraction resin (Table S1).  This limits direct comparison between the intracellular and 

extracellular data due to variability in extraction efficiency among compounds; however, 

our analysis is focused on changes in concentrations of metabolites over time rather than 

on their absolute values.  

 Untargeted metabolomics data were processed with XMCS 1.38.0 (Smith et al., 

2006) and CAMERA 1.18.0 programs (Kuhl et al., 2012) in R.  The resulting peak table 

from XCMS and CAMERA was quality checked using several parameters.  For each 

mass feature of the intracellular metabolite data, the coefficient of variation was 

calculated for the samples (using peak area) and for the pooled samples described above.  

The coefficient of variation within the samples was required to be greater than that within 

the pooled samples (Vinaixa et al., 2014).  The average peak area of samples also had to 

be at least 35% greater than the average peak area of the corresponding media control 

samples.  Additionally, each mass feature was required to be present in at least three 

samples in positive mode and four samples in negative mode (including replicate 

samples), as there was more noise in the negative mode data.  Peak areas of mass features 

are proportional to metabolite concentration and thus were normalized to the filtrate 

volume or to TOC for analysis.  Quality-checked mass feature data (normalized peak 

areas) were used in nMDS and analysis of similarity (ANOSIM) analyses to characterize 

changes in metabolic profile over time and between samples (see SI).  Draft predicted 

metabolomes were generated (Karp et al., 2011) and compared to experimental mass 
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features to obtain features of interest (see SI).  Mass features of interest with an 

associated fragmentation spectrum were processed using the xcmsFragment function in 

XCMS and the spectra were queried against the METLIN metabolomics database (Smith 

et al., 2005) and in the program MetFrag (Wolf et al., 2010).  MetFrag searches chemical 

and biological databases such as KEGG (Kanehisa et al., 2014) using the parent ion mass 

of the feature of interest and the associated fragmentation spectrum.  For each putative 

match in the database, MetFrag generates all possible fragments (in silico) of the 

molecule and compares this fragmentation spectrum to that of the mass feature of interest.  

Putative identifications were confirmed with commercial standards analyzed by our 

methods (i.e., kynurenine, tryptophan and other standards from the targeted method, see 

SI). The processed untargeted and targeted metabolomics data from the current project 

have been submitted to MetaboLights (Haug et al., 2013) and are available as 

MTBLS155. 
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Figure 1. Non-metric multidimensional scaling (nMDS) of intracellular metabolic 

profiles (A, C) (r2 = 0.93, 0.85, respectively) and extracellular metabolic profiles (B, D) 

(r2 = 0.99, 0.95, respectively) from untargeted analysis in positive ion mode (A, B) and 

negative ion mode (C, D). Profiles corresponding to time points (Early = day 0, 2; Mid = 

8, 10; Late = 15, 17) are indicated by the legend. Extracellular profiles that separate by 

major time points (B, D) are highlighted by ellipses. 
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Figure 2. TOC-normalized intracellular metabolites from targeted analysis clustered by 

sample (columns, days 0-17) and by metabolite (rows) (Bray-Curtis dissimilarity) and 

expressed as relative concentration to the average for each metabolite. Only metabolites 

observed in more than one third of samples were used. A value of 1 is equal to the 

average concentration and is visualized as light green on the color spectrum. Darker 

colors represent values above the average concentration and lighter colors represent 

values below the average concentration. Groups of interest are shown as A-C (see SI).  

MTA= 5’-methylthioadenosine, AMP = 5’-adenosine monophosphate, IMP = 5’-inosine 

monophosphate, PEP = phosphoenolpyruvate, DMSP = dimethylsulfoniopropionate. 
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Figure 3. Volume-normalized concentrations of a subset of targeted metabolites in the 

extracellular fraction over time. Replicate samples are indicated by sampling day. 

Dominant metabolites are indicated by a (*) in the legend.  
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Figure 4.  Extracellular tryptophan quantified in the targeted method plotted against the 

peak area of the mass feature identified as tryptophan (extracellular) in the untargeted 

method, showing a significant correlation (Spearman’s ρ=0.81, p < 0.01). 
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Figure 5. Volume-normalized (A) and TOC-normalized (B) peak area of the mass feature 

identified as the amino acid kynurenine in the extracellular fraction over time (positive 

ion mode).  The structure of kynurenine is shown as an inset in A. The black lines 

represent the average between replicate cultures (circles and asterisks), at each time point 

and the gray represents the media control. For days 2 and 15, data from only one replicate 

is available. 
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Table 1. Metabolites of interest in the intracellular fraction from targeted metabolomics 
analysis. Intracellular metabolites were normalized to total organic carbon (TOC). 
Metabolites that are shaded light gray increased over time, while metabolites shaded dark 
gray decreased over time, and non-shaded metabolites were variable or remained steady 
over time. The fold change from the second time point* to the last time point is shown in 
the shading. 
 

Most abundant intracellular compounds  Fold change  
Spermidine 3 
Glutathione (reduced) 1 
Glutamate 2 
5'-adenosine monophosphate (AMP) 4 
Dimethylsulfoniopropionate (DMSP) 3 
Glucose 6-phosphate 2 
Arginine    10** 
Citrulline 1 
Uracil   
Glutamine   
Thiamin   
N-acetylglucosamine   
Glycine betaine   
Proline   
Chitobiose   

 

* The second time point rather than the first time point was used to allow cells to be fully 
acclimated after inoculation. 

**This metabolite was detected at the initial time point but not the second time point; 
therefore, the average of the first two time points was used to calculate the fold change. 
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Table 2. Metabolites of interest in the extracellular fraction from targeted metabolomics 
analysis. Extracellular metabolites were normalized to total organic carbon (TOC). 
Metabolites that are shaded increased over time, while non-shaded metabolites were 
variable or remained steady over time. The fold change from the second time point* to 
the last time point is shown in the shading. 
 
Most abundant extracellular compounds  Fold change  
Adenosine 16 
Thymidine 12 
N-acetylglutamic acid 2 
4-hydroxybenzoic acid 1 
Phenylalanine 

 Tryptophan   
Succinic acid   
Inosine   
Indole 3-acetic acid   
N-acetyltaurine   
3-mercaptopropionate   
Cyanocobalamin   
Taurocholate   

 

* The second time point rather than the first time point was used to allow cells to be fully 
acclimated after inoculation and to mitigate the influence of the inoculating media on 
extracellular concentrations.  

 

 

 

 

 

 


