154 research outputs found

    Eyelid development, fusion and subsequent reopening in the mouse

    Get PDF
    The process of eyelid development was studied in the mouse. The critical events occur between about 15.5 d postcoitum (p.c.) and 12 d after birth, and were studied by conventional histology and by scanning electron microscopy. At about 15.5 d p.c. the cornea of the eye is clearly visible with the primitive eyelids being represented by protruding ridges of epithelium at its periphery. Over the next 24 h, eyelid development proceeds to the stage when the cornea is completely covered by the fused eyelids. Periderm cells stream in to fill the gap between the developing eyelids. Their proliferative activity is such that they produce a cellular excrescence on the outer surface of the line of fusion of the eyelids. This excrescence had almost disappeared by about 17.5 d p.c. Keratinisation is first evident at this stage on the surface of the eyelids and passes continuously from one eyelid to the other. Evidence of epidermal differentiation is more clearly seen in the newborn, where a distinctive stratum granulosum now occupies about one third of its entire thickness. Within the subjacent dermis, hair follicles are differentiating. By about 5 d after birth, a thick layer of keratin extends without interruption across the junctional region. While a noticeable surface indentation overlies the latter, a similar depression is only seen on the conjunctival surface by about 10 d after birth. Keratinisation is also observed to extend in from the epidermal surface to involve the entire region between the 2 eyelids at about this time.(ABSTRACT TRUNCATED AT 250 WORDS

    Evaluation of risk factors leading to soil destabilisation on the south coastal sandplain of Western Australia

    Get PDF
    The problems of wind erosion in part of the south coast of Western Australian sandplain area were described previously (Gorddard et al, 1981) with 7.3 per cent of cleared and 18.3 per cent of the cropped area showing evidence of sand blasting. Department of Agriculture trials have shown that the loss of the top four millimetres of top soil from pastured paddocks can reduce following crop yields by up to 20 per cent (Marsh and Carter, 1983). Animal production problems associated with wind erosion of soils have not been quantified, but a number of problems such as reduced carrying capacity and nutritional problems are seen as significant throughout the area. Farmer opinion suggests that high grazing pressures are a major contributing factor to wind erosion however Gorddard et al (1981) were unable to identify any empirical relationship between stocking rate, cropping practice and erosion risk

    Adaptive model-driven user interface development systems

    Get PDF
    Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague many software applications. Model-driven engineering formed the basis for most of the systems targeting the development of such UIs. An overview of these systems is presented and a set of criteria is established to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and highlighted the areas of promising improvement

    Mouse SPNS2 Functions as a Sphingosine-1-Phosphate Transporter in Vascular Endothelial Cells

    Get PDF
    Sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is produced inside the cells, regulates a variety of physiological and pathological responses via S1P receptors (S1P1–5). Signal transduction between cells consists of three steps; the synthesis of signaling molecules, their export to the extracellular space and their recognition by receptors. An S1P concentration gradient is essential for the migration of various cell types that express S1P receptors, such as lymphocytes, pre-osteoclasts, cancer cells and endothelial cells. To maintain this concentration gradient, plasma S1P concentration must be at a higher level. However, little is known about the molecular mechanism by which S1P is supplied to extracellular environments such as blood plasma. Here, we show that SPNS2 functions as an S1P transporter in vascular endothelial cells but not in erythrocytes and platelets. Moreover, the plasma S1P concentration of SPNS2-deficient mice was reduced to approximately 60% of wild-type, and SPNS2-deficient mice were lymphopenic. Our results demonstrate that SPNS2 is the first physiological S1P transporter in mammals and is a key determinant of lymphocyte egress from the thymus

    Biogeochemical and ecological impacts of boundary currents in the Indian Ocean

    Get PDF
    Monsoon forcing and the unique geomorphology of the Indian Ocean basin result in complex boundary currents, which are unique in many respects. In the northern Indian Ocean, several boundary current systems reverse seasonally. For example, upwelling coincident with northward-flowing currents along the coast of Oman during the Southwest Monsoon gives rise to high productivity which also alters nutrient stoichiometry and therefore, the species composition of the resulting phytoplankton blooms. During the Northeast Monsoon most of the northern Indian Ocean boundary currents reverse and favor downwelling. Higher trophic level species have evolved behavioral responses to these seasonally changing conditions. Examples from the western Arabian Sea include vertical feeding migrations of a copepod (Calanoides carinatus) and the reproductive cycle of a large pelagic fish (Scomberomorus commerson). The impacts of these seasonal current reversals and changes in upwelling and downwelling circulations are also manifested in West Indian coastal waters, where they influence dissolved oxygen concentrations and have been implicated in massive fish kills. The winds and boundary currents reverse seasonally in the Bay of Bengal, though the associated changes in upwelling and productivity are less pronounced. Nonetheless, their effects are observed on the East Indian shelf as, for example, seasonal changes in copepod abundance and zooplankton community structure. In contrast, south of Sri Lanka seasonal reversals in the boundary currents are associated with dramatic changes in the intensity of coastal upwelling, chlorophyll concentration, and catch per unit effort of fishes. Off the coast of Java, monsoon-driven changes in the currents and upwelling strongly impact chlorophyll concentrations, seasonal vertical migrations of zooplankton, and sardine catch in Bali Strait. In the southern hemisphere the Leeuwin is a downwelling-favorable current that flows southward along western Australia, though local wind forcing can lead to transient near shore current reversals and localized coastal upwelling. The poleward direction of this eastern boundary current is unique. Due to its high kinetic energy the Leeuwin Current sheds anomalous, relatively high chlorophyll, warm-core, downwelling eddies that transport coastal diatom communities westward into open ocean waters. Variations in the Leeuwin transport and eddy generation impact many higher trophic level species including the recruitment and fate of rock lobster (Panulirus cygnus) larvae. In contrast, the transport of the Agulhas Current is very large, with sources derived from the Mozambique Channel, the East Madagascar Current and the southwest Indian Ocean sub-gyre. Dynamically, the Agulhas Current is upwelling favorable; however, the spatial distribution of prominent surface manifestations of upwelling is controlled by local wind and topographic forcing. Meanders and eddies in the Agulhas Current propagate alongshore and interact with seasonal changes in the winds and topographic features. These give rise to seasonally variable localized upwelling and downwelling circulations with commensurate changes in primary production and higher trophic level responses. Due to the strong influence of the Agulhas Current, many neritic fish species in southeast Africa coastal waters have evolved highly selective behaviors and reproductive patterns for successful retention of planktonic eggs and larvae. For example, part of the Southern African sardine (Sardinops sagax) stock undergoes a remarkable northward migration enhanced by transient cyclonic eddies in the shoreward boundary of the Agulhas Current. There is evidence from the paleoceanographic record that these currents and their biogeochemical and ecological impacts have changed significantly over glacial to interglacial timescales. These changes are explored as a means of providing insight into the potential impacts of climate change in the Indian Ocean
    • …
    corecore