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Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague 

many software applications. Model-driven engineering formed the basis for most of the systems targeting 

the development of such UIs. An overview of these systems is presented and a set of criteria is established 

to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, 

techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the 

fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and 

highlighted the areas of promising improvement.  

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures – Domain-

specific architectures; D.2.2 [Software Engineering]: Design Tools and Techniques – User interfaces; 

H.5.2 [Information Interfaces and Presentation]: User Interfaces – User-centered design 

General Terms: Design, Human Factors 

Additional Key Words and Phrases: Adaptive user interfaces, model-driven engineering 

 

 INTRODUCTION 1.

The user interface (UI) layer is considered one of the key components of software 

applications since it connects their end-users to the functionality. Well-engineered 

and robust software applications could eventually fail to be adopted due to a weak UI 

layer. Some user interface development techniques such as: universal design [Mace 

et al. 1990], inclusive design [Keates et al. 2000], and design for all [Stephanidis 1997] 

promote the concept of making one UI design fit as many people as possible. Yet, a 

UI is not independent from its context-of-use, which is defined in terms of the user, 

platform, and environment [Calvary et al. 2003]. The “one design fits all” approach is 

unable to accommodate all the cases of variability in the context-of-use, in many 

cases leading to a diminished user experience. Building multiple UIs for the same 

functionality due to context variability is difficult since the scope of variability cannot 

be completely known at design-time and there is a high cost incurred by manually 

developing multiple versions of the UI. Adaptive UIs have been promoted as a 

solution for context variability due to their ability to automatically adapt to the 

context-of-use at runtime. User interfaces capable of adapting to their context-of-use 

are also referred to as multi-context or multi-target [Fonseca 2010]. A key goal 

behind adaptive UIs is plasticity denoting a UI’s ability to preserve its usability 

across multiple contexts-of-use [Coutaz 2010]. Norcio and Stanley [1989] consider 

that the idea of an adaptive UI is straightforward since it simply means that: “The 

interface should adapt to the user; rather than the user adapting to the system” (p. 399) 
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but they note that in spite of the simplicity of the definition, there are some difficult 

and complex problems relating to adaptive UIs. In our study of the literature, we 

noticed that some of these problems are technical and are related to devising systems 

that can support the development of adaptive UIs, while others are related to human 

factors such as the end-user acceptance of these UIs. Realizing the abstract properties 

illustrated in Fig. 1, could help in handling some of the technical and human 

problems related to adaptive UIs. 

 

 

Fig. 1. Self-* Properties of Adaptive User Interfaces 

 

Salehie and Tahvildari [2009] present a hierarchy of adaptability properties for 

software systems, referred to as self-* properties. This hierarchy demonstrates 

different complexity levels in software application adaptability. We consider that the 

following properties on this hierarchy are applicable to the domain of adaptive UIs:  

— Context-awareness “indicates that a system is aware of its context, which is its 

operating environment” (p. 5). If the UI is aware of its context and is able to detect 

context changes, then it can trigger adaptations (e.g., based on a set of rules) in 

response to those changes in order to preserve its usability.  

— Self-configuring “is the capability of reconfiguring automatically and dynamically 

in response to changes” (p. 5). To keep the UI adaptation rules up to date with an 

evolving context-of-use (e.g., if a user’s computer skills improve), there is a need for 

a mechanism that can reconfigure these rules by monitoring such changes. Another 

type of rule reconfiguration could be based on the end-users’ feedback. For example, 

the end-user may choose to reverse a UI adaptation or select an alternative. Keeping 

the end-users involved in the adaptation process could help in increasing their 

awareness and control, thereby improving their acceptance of the system. 

— Self-optimizing “is the capability of managing performance and resource allocation 

in order to satisfy the requirements of different users” (p. 5). To adapt this definition 

to user interfaces, we can say that a UI can self-optimize by adapting some of its 

properties. For example, adding or removing features, changing layout properties 

(e.g., size, location, type, etc.), providing new navigation help, etc. 

 

The triplet (user, platform, and environment) forming the context-of-use can be 

considered as categories of aspects that could promote adaptive UI behavior. The user 

can have an impact on changing the context in terms of variable needs. The needs 

could be monitored through each user’s behavior upon using the system or be 

predefined through a set of dynamically configurable rules. For example, the 

behavior of physically disabled users can be monitored through the speed and 

accuracy of their mouse clicks and hovering, enabling the UI to be adapted 

accordingly. On the other hand a user’s countries of birth and residence could be used 

to adapt the UI according to predefined, dynamically configurable rules based on 

Self- 
optimizing 

Self-configuring 

Context-awareness 

End-user 
feedback loop 

Monitoring 
feedback loop 
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cultural preferences. The definition of platform can accommodate both physical 

devices (e.g., phone, tablet, laptop, etc.), operating systems, and different types of 

application platforms (e.g., web, desktop, rich internet application, etc.) [Aquino et al. 

2010]. Variability in screen size and the available UI widgets are common examples 

of aspects that could spur platform related adaptive UI behavior. Changes in the 

environment such as: distance from display devices and mobility, could also incur a 

change in the context hence requiring the UI to adapt. 

 

Numerous applications suffer from usability problems because their UIs do not 

cater for context variability. Enterprise applications such as enterprise resource 

planning systems are but one example of such applications [Topi et al. 2005]. 

Adaptive UIs have been suggested for enhancing usability in these applications by 

catering to the variable user needs [Singh and Wesson 2009]. Many approaches were 

proposed for developing adaptive UIs targeting different types of software systems 

based on aspects such as: accessibility [Gajos et al. 2010], concurrent tasks [Bihler 

and Mügge 2007], culture [Reinecke and Bernstein 2011], natural context 

[Blumendorf et al. 2007], platform [Demeure et al. 2008], etc. Other aspects such as: 

mental workload [Byrne and Parasuraman 1996] and cognition [Solovey et al. 2011] 

were discussed in non-technical works and could be targeted by future systems.  

 

This survey primarily targets at the topic of adaptive UI development systems that 

adopt a model-driven approach. This topic spans the disciplines of software engineering 

and human-computer interaction. We focus mostly on the systems that adopt model-

driven engineering (MDE) since it offers several advantages and has been receiving 

the most attention in the literature. Our main aim is to demonstrate the strengths and 

shortcomings of the state-of-the-art and offer recommendations for future research. 

The scope of this paper is narrowed down progressively in Sections 2 and 3. 

Section 2 discusses the different approaches to UI development and adaptation, and it 

also evaluates these approaches based on criteria taken from the literature to justify 

our focus on the model-driven approach. Section 3 primarily provides an overview of 

early model-based UI development systems and justifies why we focused on the latest 

generation of systems. The evaluation criteria based on which we assess the state-of-

the-art are established in Section 4 either based on recommendations from the 

literature or by combining features from multiple existing systems. 

Our evaluation of the state-of-the-art, which we classified into the dimensions of 

architectures, techniques, and tools, is presented in Sections 5, 6, and 7 respectively. 

We believe that a comprehensive system targeting the development of adaptive UIs 

should provide a reference architecture depicting the various characteristics of the 

proposed approach, a practical technique to achieve the sought after adaptive 

behavior based on this reference architecture, and a support tool for stakeholders to 

develop UIs and adapt them with the proposed adaptation technique.  

Finally, our conclusions and future outlook are given in Section 8 based on the 

results of the evaluation we conducted. 
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 APPROACHES TO USER INTERFACE DEVELOPMENT AND ADAPTATION 2.

The existing approaches for developing adaptive user interfaces could be classified 

under two categories: window managers and widget toolkits, and model-driven 

engineering. Window managers provide a programming model to control the UI’s 

appearance while widget toolkits are reusable code-based libraries of UI components 

that can support adaptation capabilities. On the other hand, the model-driven 

engineering (MDE) approach does not rely directly on code for creating the UIs but 

on higher level specifications from which the UI could be derived. In MDE, the 

adaptive behavior is usually applied to one of the levels of abstraction before deriving 

the final user interface that gets presented to the end-user. 

This section provides an overview of the traditional approach to UI development 

and compares the approaches undertaken for developing adaptive user interfaces. We 

established the following criteria based on the existing literature and will use them 

as a basis for evaluating and comparing the approaches: 

— Checking the adaptive behavior is important to avoid conflicting outputs since 

this behavior is defined by humans and is thereby error-prone. For example, if a 

procedure is defined to eliminate part of the UI for a given context-of-use, having 

the ability to check for a dependency between the removed part and the rest of the 

UI is important to maintain the UI’s functionality [Bergh et al. 2010]. 

— Completeness is defined in terms of the types of user interfaces that can be 

produced using a certain UI development approach [Florins 2006]. Some 

approaches might be only suitable for developing a particular type of user 

interfaces such as WIMP UIs. This criterion could be the same as generality, which 

is the ability of applying the solution to a variety of cases [Myers et al. 2000]. 

— Control over the UI is related to the level of details that the designer can 

manipulate and the predictability of the final outcome [Florins 2006]. Some 

automated approaches only allow high-level designer input, hence decreasing the 

control and the predictability of the outcome; while others allow lower-level input 

such as control over the concrete widgets. Designer input helps in providing 

different versions of the UI, one of which is designed by a human and others 

adapted for a particular purpose. Fully-mechanized UI construction has been 

criticized in favor of applying the intelligence of human designers for achieving 

higher usability [Pleuss et al. 2010]. It would be better if the designer could 

manipulate a concrete object rather than its abstraction [Demeure et al. 2009]. 

— The cost of developing adaptive UIs is an important factor that could affect the 

adoption of this approach. Cost is one of the factors affecting the success of any 

interactive computer system from the vendor’s point of view [Mayhew 1999]. 

— The learning curve is affected by how common an approach is in a market or 

software-development company. It has also been related to the threshold that 

indicates how difficult it is to use a system for constructing UIs [Myers et al. 2000]. 

— Technology independence allows a UI development approach to cover a wider 

range of existing technologies and to take into consideration new technologies that 

could emerge in the future. One approach promoting technology independence is 

the use of UI description languages (UIDLs) such as: UsiXML [Limbourg and 

Vanderdonckt 2004], UIML [Abrams et al. 1999], etc. 

— Traceability “is the ability to establish degrees of relationship between two or 

more products of a development process, especially products having a predecessor-
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successor or master-subordinate relationship to one another” [Galvao and Goknil 

2007] (p. 314). In adaptive UI development, it could be necessary to trace the 

adaptation performed and revert back to the original UI either partially or fully. 

 Traditional Development : Programming, Event, Scripting, and Markup Languages 2.1

Using programming languages for user interface development has been investigated 

for some time. The Mikey [Olsen,Jr. 1989] system and its predecessor MIKE 

[Olsen,Jr. 1986] are early propositions for managing user interfaces using 

programming languages. Mikey provided an example of applying Pascal to develop 

UIs for the Apple Macintosh and MIKE was an attempt towards a User Interface 

Management System (UIMS). Another approach focused on using object-oriented 

languages [Schmucker 1987]. The first attempts in UI development at Xerox PARC 

used interpreted programming languages such as Smaltalk and Dlisp that allow 

developers to easily make changes and test the new UI version. Although this feature 

was lost with compiled languages like C++, it persists in other languages such as 

those used for hypertext markup (e.g., HTML and XHTML). 

 

Event languages allowed developers to control various UI related events (e.g., 

input and output). Early research work on these languages included the Sassafras 

[Hill 1986] and the University of Alberta UI Management System [Green 1985]. 

These types of languages became popular with modern commercial graphical user 

interface presentation technologies such as: Visual Basic Forms, .NET Windows 

Forms, Java Swing, etc. Therefore, event languages became part of the visual UI 

design tools in integrated development environments (IDEs) such as: Visual Studio, 

Eclipse, etc. Modern languages like the Windows Presentation Foundation (WPF) 

combine markup languages with programming languages to separate the language 

used for designing the UI from that used for coding the functionality behind it. 

 

Today, the traditional approach to UI development employs one of the existing 

presentation technologies. There is a variety of software applications types each 

relying on different presentation technologies. The following are some examples:  

—Desktop Applications: .NET Windows Forms and WPF, Java Swing and AWT, etc. 

—Web Applications: HTML, XHTML, CSS, VRML, etc. 

—Rich Internet Applications (RIA): Silverlight, XUL, Flex, etc. 

 

Although the traditional development approach has a low learning curve, high 

completeness, and control over the UI, it has several disadvantages when developing 

adaptive UIs. The two main disadvantages are technological dependency and the 

high difficulty in adapting the UI to various contexts-of-use without significantly 

increasing the development cost. Sections 2.2 and 2.3 present two UI development 

approaches, namely window managers and widget toolkits, and MDE, which were 

adopted by many systems for developing adaptive UIs. 

 Window Managers and Widget Toolkits 2.2

Window managers provide developers with a programming model to control the way 

the user interface appears on the screen. Yet, a direct use of window managers 

proved to be tedious hence toolkits were developed to make UI construction easier. 

Toolkits provide a library of widgets and a framework for managing UI creation 
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using this library. Each widget is a component that can manage its own appearance 

on the screen. Early efforts towards toolkits were the Apple Macintosh Toolbox 

[Huxham et al. 1986] and the Andrew Toolkit [Palay 1989]. 

 

There are approaches that operate on the window level and could be classified as 

being adaptable rather than adaptive, indicating that manual adaptation is performed 

by the user. One approach allows HTML based UIs to be adapted by the end-users 

through a toolkit with predefined adaptation operations that could store changes in a 

central repository as Cascading Style Sheets (CSS) [Nebeling and Norrie 2011]. UI 

Façades [Stuerzlinger et al. 2006] were presented as a technique for allowing end-

users to adapt UIs by the means of drag-and-drop whereby any part of a window can 

be moved to a different location either inside the same window or to another one. 

 

Toolkit-based approaches for adaptive user interfaces have been explored 

extensively in the literature and attempt to address specific UI adaptation problems. 

A molecular architecture is offered alongside a toolkit called Ubit to provide UI 

adaptation operations such as: magic lenses, transparent tools, and semantic zooming 

[Lecolinet 2003]. The caring, sharing widgets are presented as part of a toolkit that 

offers widgets with multiple built-in output modalities that can be swapped based on 

different aspects such as: screen size, processing power, etc. [Crease et al. 2000]. A 

system called Fruit also focuses on multi-modality to support the needs of users with 

disabilities and those operating in special environments [Kawai et al. 1996]. The 

selectors are semantic-based controls that can be presented in a variety of ways in 

order to replace classical widgets that have a fixed appearance [Johnson 1992]. The 

Ubiquitous Interactor targets device independent UIs by separating the presentation 

from user interaction and services [Nylander et al. 2004]. Widget-level adaptation is 

also promoted by WAHID, which allows the incorporation of adaptive behavior in 

new and legacy applications based on internal and external architectures [Jabarin 

and Graham 2003]. Both ICON [Dragicevic and Fekete 2001] and SwingStates 

[Appert and Beaudouin-Lafon 2006] are toolkits based on Java Swing. ICON provides 

an editor that supports the configuration of input devices allowing them to be 

connected to graphical software interactions whereas SwingStates uses state- 

machines to extend existing Java Swing widgets with new interaction techniques. 

 

Widget toolkits reduce the cost of developing adaptive UIs when compared to the 

traditional development approach and maintain completeness and control. Yet, there 

are downsides to using this approach. Widget toolkits do not improve technological 

independence since they are tightly coupled with a single programming language or 

presentation technology (e.g., selectors with C++, WAHID with MFC, ICON and 

SwingStates with Java Swing, etc.). Also, they are in many cases hard to extend or 

non-extensible and do not support traceability. As indicated by Demeure et al. [2008], 

toolkit-based approaches do not support temporal operators on tasks (e.g., sequence, 

interleaving, etc.) in a similar manner to MDE (e.g., ConcurrTaskTree   aterno  1999]), 

which results in losing the transformation that changes the UI. Another disadvantage 

of toolkit-based approaches is their inability to perform checking of the overall 

adaptation impact. One example of such checking is the dependency between UI 

tasks when the adaptation eliminates certain tasks based on changes in the context-

of-use [Bergh et al. 2010]. 
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 Model-Driven Engineering 2.3

Model-driven development (MDD) is promoted by approaches such as the Model-

Driven Architecture (MDA), which provides a technology independent means for 

absorbing the effect of constant changes in technology and business requirements 

[Soley and OMG Staff Strategy Group 2000]. MDA is about using modeling languages 

as programming languages rather than merely as design languages since this can 

improve the productivity, quality, and longevity outlook [Frankel 2003]. MDA unites 

the Object Management Group’s (OMG) well-established modeling standards with 

past, present, and future middleware technologies to integrate “what you have built, 

with what you are building and what you are going to build”. Rather than focusing on 

yet another “next best thing”, MDA raises the bar and designs portability and 

interoperability into the application at the model level [OMG 2013]. 

 

Model-driven engineering (MDE) has a wider scope than MDA’s development 

activities and combines process and analysis with architectures [Kent 2002]. Since 

MDE aims to raise the level of abstraction of software applications, it can serve as a 

basis for devising adaptive UIs due to the possibility of applying different types of 

adaptations on the various levels of abstraction. This approach has received the most 

attention in the literature. We differentiate between the following model-driven 

approaches that can be used for developing user interfaces: 

— Static modeling relies on models for UI design and eventually ends in a phase 

before code generation. By definition, static models cannot change at runtime 

hence are not useful beyond the development phase. 

— Generative runtime modeling keeps the models alive at runtime to adapt the 

code-based UI artifacts that were generated at design-time. 

— Interpreted runtime modeling does not require code generation for creating 

the UI. Instead, the models are interpreted at runtime to render the UI. 

 

Runtime models constitute an important area of research in model-driven 

engineering [France and Rumpe 2007]. Also, runtime models are usually more suited 

for supporting adaptive behavior. However, in certain scenarios using runtime models 

while maintaining the generated code-based artifacts is insufficient for achieving the 

sought after adaptations. Some adaptive scenarios require support for actions such as: 

eliminating widgets; replacing a widget with another; adding new widgets that did 

not exist during the development phase; or composing a completely new UI from 

existing UIs. Performing such actions at runtime could be difficult when the user 

interface is based on generated artifacts. One problem, for example, is the inability to 

compose new UIs at runtime since the application is expecting to render the UI from 

code instead of models. Also, substituting a widget with another would be difficult 

since the types are hard coded, whereas with runtime interpretation the types could 

be switched in the model and the widget would be rendered accordingly. In contrast, 

with interpreted runtime models code generation is not needed for creating the UI but 

the models are interpreted and rendered at runtime thereby allowing more advanced 

adaptations. Additionally, by adopting interpreted runtime models, the adaptation 

could be delegated to a server hence the client machine will be merely responsible for 

rendering the UI from the adapted model. This method provides a clear separation of 

concerns. Another benefit of adopting interpreted runtime models is the ability to 

deploy UI modifications without recompiling the application. 
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When comparing the MDE approach for UI construction with traditional techniques, 

Myers et al. [2000] indicate that this approach suffers from a high learning curve. 

Yet, although the learning curve is generally higher for MDE than traditional 

development techniques, developers could quickly get used to MDE for devising UIs if 

the appropriate tool support is provided. Additionally, when assessing whether this 

learning curve is justifiable we can see that MDE is adding value to traditional and 

toolkit-based approaches by enhancing traceability, technology independence, and 

the ability to perform checking on the overall outcome of the UI adaptation. We can 

say that MDE is a viable approach to use and that other research works (e.g., 

[Florins 2006]) grade it positively in terms of its development costs. Furthermore, 

Myers et al. [2000] consider that MDE suffers from unpredictability and has a low 

ceiling indicating that it is incapable of producing advanced UIs. Yet, this 

consideration is made with fully-automated MDE-based approaches in mind. 

Nevertheless, other MDE-based approaches apply semi-automated procedures that 

allow advanced and predictable UIs to be produced by supporting designer input on 

all levels of abstraction, especially on the concrete UI. Therefore, we consider the 

ability of MDE to provide good completeness and control over the UI to be dependent 

on the implementation. 

 Summary 2.4

We can see that each of the previously discussed approaches has some advantages 

and disadvantages based on the criteria that we established. However, from our analysis 

of the approaches with respect to the criteria outlined previously (Table I), we think 

that model-driven engineering is overall better suited for devising adaptive UIs. 

Table I. Comparison between Approaches to User Interface Development 

 Traditional Development Widget Toolkits MDE 

Checking    

Completeness    

Control Over the UI    

Development Cost of Adaptive UIs    

Learning Curve    

Technology Independence    

Traceability    

   

 Legend 

 Good  

 Average  

 Poor  

 Depends on the Implementation  

 

Due to the advantages provided by the model-driven approach in devising adaptive 

user interfaces, and due to its wide discussion in the literature we shall dedicate the 

remainder of the paper to explore MDE-based adaptive UI development systems. The 

next section covers early model-based UI development systems in addition to general-

purpose frameworks and architectures, which could serve as a basis for modern 

adaptive model-driven user interface development approaches. In the remainder of 

the paper, we explore, evaluate, and compare adaptive UI architectures, techniques 

and tools that either partially or fully adopt the model-driven approach. 



Adaptive Model-Driven User Interface Development Systems 9 
                                                                                                                                         

 

 
To appear in ACM Computing Surveys, 47, 1, March 2015 

 BACKGROUND 3.

Many early model-based UI development systems were presented in the literature. 

We shall briefly discuss their strengths and shortcomings. Additionally, some works 

have presented frameworks and architectures that can serve as a basis for designing 

UIs and adaptive systems in general. We also provide an overview of these works and 

explain the potential of using them for devising adaptive model-driven UIs. 

 Model-Based User Interface Development  3.1

Model-based UI development (MBUID) has been around since the 1980’s. Meixner et 

al. [2011] differentiate between four generations of MBUID systems. The first 

generation mainly focused on automatically generating UIs but did not provide an 

integrated MBUID process while the second generation provided developers with the 

ability to: specify, generate and execute UIs. The third generation mainly focused on 

the challenge of developing UIs for a variety of interaction platforms and the current 

(fourth) generation is focusing on the development of context-sensitive UIs. In the 

current generation of MBUID systems, models and transformations are at the heart 

of the development process, making UI development model-driven instead of model-

based. An existing survey compared and analyzed 14 of the first and second 

generation MBUID systems, which are mostly concerned with improving model-

based UI development or generating UIs from models [Da Silva 2001]. Therefore, this 

sub-section only provides an overview of these early MBUID systems and their 

strengths and shortcomings while the rest of the paper tackles recent (4th generation) 

systems that target the development of adaptive UIs based on a model-driven approach. 

3.1.1 First and Second Generation MBUID Systems. A number of early systems 

were presented and primarily focused on improving UI development by making it 

simpler for developers to devise and maintain user interfaces. 

Some systems simply focused on providing better means for UI development. 

COUSIN [Hayes et al. 1985] is a UIMS that targets the development of better 

quality UIs at a low cost by focusing on providing a level of abstraction in the 

sequencing of the UI dialog (ordering of input/output events). ITS [Wiecha et al. 

1990], a four-layer tool-supported architecture, was an early attempt to represent 

UIs using multiple layers, primarily focused on separating the UI’s implementation 

(actions layer), content (dialog layer), presentation (style rule layer), and interaction 

(style program layer). ITS allowed the same UI to be presented with multiple styles.  

Enhancing the means by which we develop UIs is still an important problem. Yet, 

the rapid change in the way UIs are developed made such early UIMSs fall victim to 

the moving targets problem presented by Myers et al. [2000] to indicate that rapid 

development of technology can make it difficult for tools to keep up the pace. 

 

Another group of systems mainly focused on leveraging MBUID for UI generation. 

UIDE [Foley et al. 1991] and HUMANOID [Szekely et al. 1992] focus on automatic 

UI generation for allowing designers to experiment with different design possibilities 

before producing the final user interface. TADEUS [Elwert and Schlungbaum 1995] 

provides a methodology with a supporting environment for generating graphical UIs 

from a model representing the interactive system. GENIUS [Janssen et al. 1993] 

presented a tool supported technique for generating UIs from data models (entity 

relationship diagrams) and used a model called dialogue net (based on petri nets) as a 

visual representation of the UI’s dynamics. Other systems supporting UI generation 
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include JANUS [Balzert et al. 1996] and FUSE [Lonczewski and Schreiber 1996]. 

JANUS also supported the generation of the code that links the UI to the data. 

Most of the early MBUID systems targeting automatic UI generation adopted a 

simple rule-based approach. One exception was TRIDENT, which presented tools for 

automatically generating interactive business application UIs [Vanderdonckt and 

Bodart 1993] and a generic architecture model for such applications [Bodart et al. 

1995]. It considered more information for UI generation such as ergonomic rules that 

are represented using a complex hierarchy. Although such rules provide a more 

sophisticated generation technique, they could be tedious to implement considering 

their possibly large number (e.g., 3700 rules [Vanderdonckt and Bodart 1996]). 

  

Some systems worked on improving model-based UI representation. ADEPT 

[Markopoulos et al. 1992] is a design environment that aims to incorporate the 

theory of modeling [Jacob 1986] instead of just creating a fast prototyping tool. 

MASTERMIND [Szekely et al. 1995] is UI development environment complementing 

HUMANOID and UIDE and focuses on the presentation model. MECANO [Puerta 

1996] introduced an interface model called MIM and its modeling language MIMIC. 

A common shortcoming in early systems (e.g., COUSIN, GENIUS, HUMANOID, 

UIDE, etc.) was the lack of a high level description of the UI, which was represented 

in different ways such as: application code (HUMANOID), ER diagrams (GENIUS), 

etc. Such description was later provided by the second wave of systems such as: 

ADEPT, MASTERMIND, etc. Yet, it was only at the end of the second generation of 

MBUID systems that task models were introduced to represent UIs at the highest 

level of abstraction with notations such as the ConcurTaskTrees (CTT) [Paternò et 

al. 1997]. Other systems such as MOBI-D [Puerta and Eisenstein 1998] investigated 

new techniques for mapping the task models to lower level UI models. Additionally, 

at this stage technology independent languages such as the User Interface Markup 

Language (UIML) [Abrams et al. 1999] were introduced for defining technology 

independent UI specifications from which technology specific UIs could be generated. 

 

Developing multi-target UIs was considered at a basic level by this generation of 

MBUID systems. AME [Märtin 1996] offered tool support for the development of 

interactive systems by constructing UIs from object-oriented analysis models and 

adapting them to user-specific requirements. AMULET [Myers et al. 1997] is a 

framework aiming at making multi-operating system UI development easier.  

Some earlier systems such as ITS indicated the possibility of adapting UIs for 

different uses such as: display size, resolution, and color-depth. Yet, UI consistency 

among different applications is more emphasized than adaptation (e.g., GENIUS, 

COUSIN, etc.). Even though some later systems support UI adaptation to users and 

environments (e.g., AME using standardized object classes), this support is more 

oriented towards manual development rather than adaptive behavior. Therefore, we 

can say that the major shortcoming in the first and second generations of MBUID 

systems is that they merely use the model-based approach for UI construction rather 

than take it further for devising adaptive behavior to support multi-context UIs. 

3.1.2 Third Generation MBUID Systems. Some domain specific solutions were 

introduced in this generation such as Teallach [Griffiths et al. 2001] that applies the 

MBUID approach to devise UIs for object databases. However, the major contribution 

of this generation was a reference framework that provides guidance for model-driven 
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UI development using multiple levels of abstraction, in addition to the introduction of 

new UI description languages (UIDLs). Our review does not discuss UIDLs in details 

because they were covered by a previous survey [Guerrero-Garcia et al. 2009]. 

 

CAMELEON [Calvary et al. 2003] is a unified user interface reference framework 

that is based on two principles [Fonseca 2010]: A Model-based approach, and the 

coverage of both the design and runtime phases of multi-target user interfaces. 

CAMELEON is a seminal research work in this generation of MBUID systems. It 

provides abstraction guidance for devising UIs based on a model-driven approach. As 

opposed to conventional UI development techniques that merely construct a concrete 

level (e.g., graphical buttons, text boxes, etc.), MDE introduces additional levels of 

abstraction that help in building multi-context user interfaces.  

 

User interfaces are represented in CAMELEON on the following levels of abstraction: 

1. Tasks and Domain Models: The task model is the highest level of abstraction that 

represents UI features as tasks. One possible representation for task models is 

the ConcurTaskTrees   aterno   1999] notion that allows tasks to be connected 

with temporal operators. The domain model denotes the application’s universe of 

discourse and can be represented using UML class diagrams. This level of 

abstraction relates to the Computation Independent Model (CIM) in MDA. 

2. Abstract User Interface (AUI) Model: This level represents the UI independent of 

any modality such as: graphical, voice, gesture, etc. The AUI model can be 

represented using UIDLs such as: TERESA XML [Berti et al. 2004], UsiXML 

[Limbourg and Vanderdonckt 2004] and MARIA   aterno’ et al. 2009] (4th 

generation). The AUI relates to the Platform Independent Model (PIM) in MDA. 

3. Concrete User Interface (CUI) Model: This level is modality dependent. For example, 

it can represent the UI in terms of graphical widgets such as: buttons, labels, etc. 

Possible UIDLs for representing concrete user interfaces include: TERESA XML, 

UIML [Abrams et al. 1999], XIML [Puerta and Eisenstein 2002], UsiXML, and 

MARIA. The CUI relates to MDA’s Platform Specific Model (PSM). 

4. Final User Interface (FUI): Represents the actual UI rendered with an existing 

presentation technology such as: HTML, Windows Forms, WPF, Swing, etc. 

 

CAMELEON is a suitable reference for approaches wishing to adopt model-driven 

engineering of interactive systems. MDE can provide a basis for devising adaptive 

UIs since the levels of abstraction presented by CAMELEON allow different types of 

adaptive behavior to be implemented such as: Using the task model to adapt the 

feature-set and using the concrete UI model to adapt the layout. 

 Reference Architectures for Adaptive Systems 3.2

Some software architectures concerned with adaptive system layering can be related 

to any part (not just the UI) of an adaptive software system. These architectures form 

a reference for autonomic (self-managing) software systems. We will only give a brief 

overview of these architectures since more details can be found in an existing survey 

of autonomic software systems [Huebscher and McCann 2008]. 

 

The MAPE-K loop was created by IBM as a reference model for autonomic 

computing [IBM 2006]. MAPE-K considers software systems as a set of managed 
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resources that could range from an individual application to a more complex cluster. 

The MAPE-K loop is composed out of four functions with knowledge sharing: 

— Monitor: In this phase, information is collected from the managed resources. 

— Analyze: Analysis is performed in order to predict any future errors in the system. 

— Plan: The planning phase prepares the actions required for fulfilling a goal. 

— Execute: In this phase, the plan is executed and the dynamic updates are applied. 

Rainbow is a framework that employs a control loop for managing self-adaptive 

systems and provides components that fulfill the phases of the MAPE-K loop [Garlan 

et al. 2004]. Rainbow’s architecture layer is made out of the following components: 

— The Model Manager provides access to the system’s architectural model. 

— The Constraint Evaluator constantly checks the model to see if a constraint has 

been violated in order to trigger an adaptation. 

— The Adaptation Engine is responsible for executing the adaptation. 

The Three Layer Architecture [Kramer and Magee 2007] is an architectural 

reference for self-managing software systems. It comprises the following layers: 

— Component Control (bottom layer) is a self-managed set of interconnected 

components capable of reporting its status to the higher levels. 

— Change Management (middle layer) executes actions that handle new situations. 

— Goal Management (highest layer) is responsible for handling time consuming 

computations that attempt to achieve an outcome relevant to the sought after goal. 

 

Although these architectures do not particularly target UIs, when combined with 

UI abstraction frameworks such as CAMELEON they could form the basis for an 

architecture that covers both model-driven UI representation and adaptive behavior. 

 CRITERIA FOR EVALUATING ADAPTIVE MODEL-DRIVEN UI DEVELOPMENT SYSTEMS 4.

In order to conduct a sound and objective critical review of the existing systems, we 

setup the following criteria, drawing on direct recommendations from the literature 

and also by combining features from multiple existing systems.  

The criteria we established are presented in Table II and each is classified under 

one of the following five categories: UI development, adaptive behavior development, 

general development support, engaging stakeholders, and output quality. The 

existing literature on adaptive model-driven UI development systems is quite diverse 

but we were able to classify each existing work under one or more of the following 

categories: architectures, techniques, and tools. Some of the criteria we established 

are implementation dependent. Hence, it can only be used to evaluate practical UI 

adaptation techniques or tools, whereas other criteria are also suitable for evaluating 

reference architectures as well. Therefore, Table II indicates the categories 

(architecture, technique, and tool) to which each criterion is applicable. Two of the 

criteria, namely completeness and control over the UI, were established in Section 2 

and will be used again since we considered their measure of capability in MDE to be 

implementation dependent. We should note that we do not claim that our list of 

criteria is comprehensive. The literature mentions other criteria such as: path of least 

resistance [Myers et al. 2000] and power in combination [Olsen,Jr. 2007]. However, we 

needed to limit our list to criteria that we can uniformly apply across the surveyed 

works using the information that is publicly available.  
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Table II. Criteria for Evaluating Adaptive Model-Driven UI Development Systems 

 Architectures Techniques Tools 

User Interface Development  

Completeness  X X 

Control over the UI  X X 

Levels of abstraction X X X 

Modeling approach X X  

Preserving designer input on the UI  X X 

Adaptive Behavior Development  

+Extensibility  

-Adaptation types, aspects, and factors  X X 

-Adaptive behavior X X X 

Direct and indirect adaptation X X  

Trade-off analysis X X  

Visual and code-based adaptive behavior  X X 

Multiple data sources X X  

General Development Support  

Modeling, generation, and synchronization   X 

IDE style UI   X 

+Reducing solution viscosity  

-Flexibility   X 

-Expressive leverage   X 

-Expressive match   X 

Threshold and ceiling   X 

Integration in existing systems X X  

Engaging Stakeholders  

Empowering new design participants X X X 

User feedback on the adapted UI X X  

Output Quality  

Scalability  X  

The criteria are listed below and explained. We included one or more of the following 

codes after each criterion to indicate its applicability to architectures (AR), techniques 

(TE) and/or tools (TL). These codes reflect the data shown in Table II.  

— Completeness (refer to Section 2) (TE, TL) 

— Control over the UI (refer to Section 2) (TE, TL) 

— Supporting both direct and indirect adaptation could make an approach fit for 

a wider variety of scenarios. User confusion can be reduced by providing the adapted 

UI as an alternative version (indirect adaptation) while maintaining access to the 

original UI version [McGrenere et al. 2002]. Yet, in some software systems such as 

ubiquitous applications it may be necessary to adapt the UI while the user is working 

(direct adaptation). One example is MASP, which adapts the UIs of smart home 

systems based on changes in the environment [Feuerstack et al. 2006]. (AR, TE) 

— Extensibility is considered an important characteristic in any new UI development 

approach [Demeure et al. 2008]. We refined its meaning as follows: 

— Extensibility of adaptation types, aspects, and factors indicates that a UI 

adaptation approach is not restricted to a single type such as layout optimization 

but can include a variety of adaptation types such as: feature reduction, navigation 

help, etc. The approach should also be able to accommodate multiple adaptation 

aspects (e.g., accessibility, cognition, etc.) and support the adaptation of any UI 

factor (e.g., level of access to functions, layout grouping, widget type, etc.). (TE, TL) 

— Extensibility of adaptive behavior is the approach’s capability to add new 

adaptive behavior at runtime as needed to support a variety of aspects and factors. 
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Contrary to this criterion some approaches might provide limited non-extensible 

adaptive behavior that is integrated within the system. (AR, TE, TL) 

— Empowering new design participants by introducing new populations to the 

design process [Olsen,Jr. 2007]: In the case of adaptive user interfaces, new design 

participants could be non-developers such as: end-users, I.T. personnel, etc. For 

example, leveraging communities through crowdsourcing could prove useful for 

applications that require a lot of effort for defining the adaptive behavior. (AR, TE, TL) 

— An integrated development environment (IDE) style UI (e.g., similar to 

Visual Studio or Eclipse) could provide the necessary ease-of-use for managing the UI 

and adaptive behavior artifacts of large-scale software systems. Developer familiarity 

and efficiency could be maintained if the tools supporting adaptive model-driven UI 

development adopt an interface style similar to that of the commercial IDEs. (TL) 

— An approach that can integrate in existing systems without incurring a high 

integration cost or significantly changing the system could have a higher adoption rate 

since many systems are at a mature stage in their development life-cycle. Providing a 

new advance while maintaining legacy code is a good thing [Olsen,Jr. 2007]. (AR, TE) 

— Supporting multiple levels of abstraction as suggested by CAMELEON [Calvary 

et al. 2003] offers independence of the implementation (task model), modality (abstract 

UI), and technology (concrete UI). Also, different levels may be more suitable for certain 

types of adaptation. Features can be reduced by adapting the highest level (e.g., product- 

line engineering [Pleuss et al. 2010]) and the layout can be optimized using various 

levels (e.g., graceful degradation [Florins and Vanderdonckt 2004a]). (AR, TE, TL) 

— The selected modeling approach is important. Supporting interpreted runtime 

modeling allows more advanced adaptations to be conducted (refer to Section 2.3). 

Additionally, one of the major drawbacks of generative modeling approaches is that, 

over time, models may get out of sync with the running code [Coutaz 2010]. (AR, TE) 

— Modeling, generation, and synchronization of all the levels of abstraction: 

Model-driven UI development tools should offer developers easy-to-use WYSIWYG 

editors and make transformations transparent to provide a better understanding of 

their effects [Meixner et al. 2011]. Tool-supported automated approaches must provide 

predictability to the developers using it [Myers et al. 2000], which in this case can 

be related to supporting WYSIWYG editors and transformation transparency. (TL) 

— Supporting multiple data sources allows adaptations to be carried out in various 

situations. Adaptive behavior models can embody data based on studies, which is the 

case of adapting UIs to cultural preferences by MOCCA [Reinecke and Bernstein 2011]. 

Also, monitoring the user’s behavior allows models to evolve and can be beneficial in 

other situations (e.g., targeting accessibility with MyUI [Peissner et al. 2012]). (AR, TE) 

— Preserving designer input on the UI is important since automated choices 

without a rationale make adaptive UIs unpredictable. The success of UI development 

techniques could be negatively impacted by unpredictability [Myers et al. 2000]. UI 

adaptations will obviously override the input made by the designer. Yet, in some cases 

designers might want to preserve some characteristics (e.g., prioritizing the size of a 

widget over others) thereby enhancing the predictability of the outcome. (TE, TL) 

— Reducing solution viscosity is achieved if a tool reduces the effort required to 

iterate on the possible solutions based on the following criteria [Olsen,Jr. 2007]: 

— Flexibility denotes the ability to “make rapid design changes that can then be 

evaluated by the users” (p. 255). The tools we are evaluating should be flexible by 

providing the ability to devise both the UI models and the adaptive behavior in a 

way that allows easy testing and refinement. (TL) 
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— Expressive leverage “is where the designer can accomplish more by expressing 

less” (p. 255). We consider that expressive leverage can be achieved by promoting 

the reusability of UI model parts (e.g., the same way visual-components are reused 

in traditional IDEs) and the adaptive behavior (e.g., visual-parts or scripts). (TL) 

— Expressive match “is an estimate of how close the means for expressing design 

choices are related to the problem being solved” (p. 255). One way to improve 

expressive match is by supporting visual-design tools for the UI models and 

innovative means for specifying adaptive behavior visually. (TL) 

— Scalability is an important criterion that must be checked for every new system 

[Olsen,Jr. 2007]. If the scalability of an adaptation technique is not demonstrated 

using real-life scenarios its adoption for complex software systems could decrease. (TE) 

— An ideal tool would have low threshold and high ceiling [Myers et al. 2000]. 

The “threshold” represents the difficulty in learning and using the tool, and the 

“ceiling” relates to how advanced the tool’s outcome can be. (TL) 

— Trade-off analysis between several potentially conflicting adaptations is essential 

for producing an optimal UI, especially in systems that target multiple adaptation 

aspects and factors. One example described in the literature is the trade-off between 

the user’s vision and motor abilities [Gajos et al. 2007]. (AR, TE) 

— User feedback on the adapted UI keeps the end-users in the loop of the 

adaptation process and provides awareness of automated adaptation decisions and 

the ability to override them when necessary. Creating an underlying representation for 

users and the automation to communicate is a challenge in human-automation 

interaction [Miller et al. 2005]. Keeping humans in the loop is considered one of the 

principles of adapting UIs based on MDE [Balme et al. 2004]. It can increase the end-

users’ UI control [McGrenere et al. 2002] and feature-awareness [Findlater and 

McGrenere 2007] affected by adaptive/reduction mechanisms. (AR, TE) 

— Visual and code-based representations allow different stakeholders such as 

developers and I.T. personnel to implement adaptive behavior. Some techniques only 

support a textual representation such as cascading style sheets in Comet(s) [Demeure 

et al. 2008] and behavior matrices in FAME [Duarte and Carriço 2006]. Yet, others 

indicate that a visual notation can greatly simplify the creation of UI adaptation rules 

by hiding the complexity of programming languages [López-Jaquero et al. 2009]. (TE, TL) 

We now use these criteria to evaluate the fourth (current) generation adaptive 

model-driven UI development systems. The reference architectures, practical techniques, 

and supporting tools are evaluated in Sections 5, 6, and 7 respectively. 

 REFERENCE ARCHITECTURES FOR ADAPTIVE USER INTERFACES 5.

Architectures play a fundamental role in self-adaptive software systems [Oreizy et al. 

1999]. An architecture-based approach is promoted for these systems [Kramer and 

Magee 2007] since it could build on existing work and offer generality, abstraction, 

scalability, etc. Following a reference architecture could help in realizing adaptive 

UIs in complex systems. Several architectures have been proposed as a reference for 

applications targeting adaptive UIs and other UI related features such as distribution, 

multimodality, etc. This section focuses on evaluating and comparing existing research 

works related to architectures of adaptive UIs. We briefly describe these architectures 

and argue their strengths and shortcomings, and conclude by comparing them. This 

section only evaluates references architectures. Existing adaptive UI techniques, 

whether based on a defined architecture or not, are discussed and evaluated in Section 6. 
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A 3-Layer architecture was presented for devising adaptive smart environment 

user interfaces [Lehmann et al. 2010]. Due to the ubiquitous nature of its target 

applications, this architecture only supports direct adaptations. Information is read 

from sensors, and the environment context pillar is targeted hence multiple data 

sources are not supported. The modeling approach of this architecture is based on 

generative runtime models, which could be less flexible than interpreted runtime 

models for performing advanced adaptations. Additionally, the work does not specify 

whether the architecture is meant to support all the levels of abstraction. This 

architecture does not support user feedback but refers to another work [Brdiczka et al. 

2007] that does not offer an architecture but uses user-feedback for refining initial 

situation models at runtime in order to improve the reliability of detected situations. 

 

CAMELEON-RT is a reference architecture model for distributed, migratable, and 

plastic user interfaces within interactive spaces [Balme et al. 2004]. This architecture 

targets all context-of-use pillars (user, platform, and environment), and could be 

considered general-purpose due to its implementation neutrality. We consider that it 

provides a good conceptual representation of the extensibility of adaptive behavior 

through the use of open-adaptive components [Oreizy et al. 1999], which allow new 

adaptive behavior to be added at runtime. Also, both direct and indirect adaptations 

could in theory be implemented using these components. It follows the CAMELEON 

framework hence all the levels of abstraction are supported. This architecture depicts 

observers that collect data on the system, user, platform, and environment, and feed 

it to a situation synthesizer thereby supporting multiple data sources. 

 

CEDAR is a reference architecture for stakeholders interested in developing 

adaptive enterprise application UIs based on an interpreted runtime model-driven 

approach [Akiki et al. 2012]. This architecture follows the levels of abstraction 

suggested by CAMELEON for representing its UI models. It supports both direct and 

indirect adaptation and the extensibility of its adaptive behavior, which is stored in a 

relational database. CEDAR presents components for supporting trade-off analysis 

and user feedback on the UI adaptations. Furthermore, CEDAR was evaluated by 

integrating it into an existing enterprise application called OFBiz [Akiki et al. 2014]. 

It also introduced a basic crowdsourcing approach for empowering end-users to 

participate in the UI adaptation process [Akiki et al. 2013b]. 

 

FAME is an architecture that targets adaptive multimodal UIs using a set of 

context models in combination with user inputs [Duarte and Carriço 2006]. It only 

targets modality adaptation hence it is not meant to be a general-purpose reference 

for adapting other UI characteristics. The adopted approach allows designer input on 

the CUI hence providing good control over the UI. Adaptive behavior can be extended 

using adaptive behavior matrices. FAME depicts support for multiple data-sources 

including device changes, environmental changes, and user inputs that feed into 

related models. A combination of the multiple data sources and the adaptive behavior 

matrices should be able to support both direct and indirect adaptations. 

 

Malai is an architectural model for interactive systems [Blouin and Beaudoux 

2010] and forms a basis for a technique that uses aspect-oriented modeling (AOM) 

for adapting user interfaces [Blouin et al. 2011]. The extensibility of adaptive 

behavior is poor since multiple presentations have to be defined at design-time by the 
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developer, to be later switched at runtime. Although Malai supports multiple levels of 

abstraction, the modeling approach relies on generating code (e.g., Swing, .NET, etc.) 

to represent the UI. Also, it does not describe multiple sources for acquiring adaptive 

behavior data. In theory, both direct and indirect adaptations can be supported. 

MALAI allows developers to define feedback that would help users to understand the 

state of the interactive system but the user cannot provide feedback on the 

adaptations (e.g., reverse an unwanted adaptation). 

 

We noticed that several criteria were not addressed by most of the works reviewed 

in this section. For example, only CEDAR presented components for managing trade-

off analysis and user feedback. In spite of the importance of integration in existing 

software systems that are in a mature development stage, asides from CEDAR, the 

evaluations were conducted by building new prototypes. Furthermore, empowering 

new design participants was only partially addressed by CEDAR while the other 

architectures did not incorporate any components for supporting this feature. After 

arguing the strengths and limitations of existing adaptive UI architectures, we 

present a visual evaluation and comparison in Table III that illustrates the extent to 

which each of the architectures fulfills the criteria we established in Section 4. 

Table III. Visual Evaluation and Comparison of Adaptive Model-Driven UI Development Reference Architectures 
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3-Layer Architecture     ◌     

CAMELEON-RT      ◌    

CEDAR          

FAME      ◌    

MALAI          

 TECHNIQUES FOR DEVISING ADAPTIVE MODEL-DRIVEN USER INTERFACES  6.

Adaptive behavior can target a variety of UI characteristics. In order to provide a 

boundary for this work, we shall focus on the techniques that focus on at least one of 

the two UI adaptation types that are the most targeted in the literature, namely 

feature-set adaptation and layout optimization. We define a feature as a functionality 

of a software system and a minimal feature-set as the set with the least features 

required by a user to perform a job. An optimal layout is the one that maximizes the 

satisfaction of constraints imposed by certain adaptation aspects. An optimal layout 

is achieved by adapting the properties of concrete widgets such as: type, size, etc. 

 Feature-Set Adaptation Techniques 6.1

The functionality of software applications tends to increase with every release hence 

increasing the visual complexity. This phenomenon, referred to as “bloatware” 



18                                                                                                                            P. Akiki et al. 
 

 

 
To appear in ACM Computing Surveys, 47, 1, March 2015 

[McGrenere 2000], has a negative impact on usability especially for users who do not 

require the complete feature-set. It could be helpful to provide each end-user with a 

minimal feature-set that reduces unnecessary bloat present in feature-rich UIs. Since 

the existing solutions that are related to UI bloat, expect RBUIS [Akiki et al. 2013d], 

focus on design-time adaptation rather than runtime adaptive behavior, we did not 

evaluate them according to the criteria established in Section 4. Instead, we grouped 

them into categories and evaluated their strengths and shortcomings in general. 

 

Several theoretical propositions were made for reducing a UI’s feature-set 

based on the context-of-use. Providing a multi-layered user interface design is 

promoted for achieving universal usability [Shneiderman 2003]. Other researchers 

propose using two UI versions, one fully-featured and another personalized, for taming 

the bloat in feature-rich applications [McGrenere et al. 2002]. An early research work 

proposes the use of a training wheels UI that blocks advanced functionality from 

novice users [Carroll and Carrithers 1984]. These works present a sound theoretical 

basis, useful for providing the users of feature-bloated software applications with a 

minimal feature-set. Yet, the given examples, a basic text editor [Shneiderman 2003] 

and the Word 2000 menu [McGrenere et al. 2002], do not match the complexity of 

large-scale systems such as enterprise applications. Also, these works do not provide 

a technical implementation. 

 

Approaches from software product-line (SPL) engineering [Pleuss et al. 2010] 

are used to tailor software applications and some particularly address tailoring user 

interfaces. MANTRA [Botterweck 2011] adapts UIs to multiple platforms by 

generating code particular to each platform from an abstract UI model. Although 

SPLs can be dynamic [Bencomo et al. 2008], the SPL-based approaches for UI 

adaptation focus on design-time (product-based) adaptation whereas runtime (role-

based) adaptive behavior is not addressed. 

 

Several commercial software applications use role-based tailoring of the UI’s 

feature-set. Microsoft Dynamics CRM [Microsoft 2011] and SAP’s GuiXT [Synactive 

GmbH 2010] offer such a mechanism, yet it is not generic enough to be used with 

other applications and it requires developing and maintaining multiple UI copies 

manually. An approach that operates at the model level could be more general-purpose. 

 

Some approaches relied on decomposition to break the UIs into smaller 

fragments that fit the context-of-use better. Graceful degradation is used as a method 

for supporting UIs on multiple devices [Florins and Vanderdonckt 2004a] and could 

be used for decomposing/recomposing UIs. An initial UI is constructed for the 

platform with the least constraints, and then other versions are generated for the 

platforms with more constraints based on designer annotations. In concept, this 

method could be used for minimizing a UI’s feature-set by decomposing it into 

smaller fragments. Yet, its main limitation lies in its reliance on designer 

annotations that would not work when the adaptations are only known at runtime. 

An interesting approach would be to support runtime annotations combined with 

automated procedures that can adapt the UI based on each user’s behavior. Another 

approach called (de)composition complements some aspects of graceful degradation 

[Lepreux et al. 2007]. It aims towards supporting reusability at a high-level design 

without the need for applying constant copy/paste operations. Similar to the graceful 
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degradation approach, (de)composition could be in concept used for reducing the UI’s 

feature-set. The authors mention the applicability of this approach both at design-time 

and runtime but no significant demonstration is made towards runtime scenarios 

since all the examples were restricted to design-time. Decomposing/composing UIs at 

runtime while maintaining functionality would require work that does not merely 

adjust the UI’s layout but maintains and adapts the functionality behind it. 

 

The main limitations in approaches attempting to target feature-set adaptation 

are: lack of a practical implementation mechanism, lack of generality of the solutions, 

or restriction to design-time adaptation without offering a runtime adaptive solution. 

Based on these limitations, we saw that more work is needed to provide a general-

purpose, model-driven, and tool supported adaptive UI mechanism capable of 

reducing UI bloat at runtime by adapting the UI’s feature-set based on the context-of-

use. Therefore, we introduced Role-Based UI Simplification (RBUIS) [Akiki et al. 

2013d] as a mechanism for improving usability by providing users with a minimal 

feature-set and an optimal layout based on the context-of-use. Since RBUIS also 

supports layout optimization, we shall discuss it in Section 6.2 and evaluate it 

according to the criteria established in Section 4. 

 Layout Optimization Techniques 6.2

Providing an optimal layout based on the context-of-use could improve usability by 

catering to the diverse end-user needs. For example, the usability of SA  (world’s leading 

ERP system [Jacobson et al. 2007]) is mostly affected by navigation and presentation 

[Singh and Wesson 2009] and its UI does not adapt to each end-user’s skills [Uflacker 

and Busse 2007]. Existing works use different approaches for adapting the UI layout. 

In this sub-section, we provide a brief description of each of these works and argue 

their strengths and shortcomings using the criteria we established in Section 4. 

 

The COntext Mouldable widgeT (Comet(s)) was introduced as a set of widgets 

that support UI plasticity [Calvary et al. 2005a]. It provides an architectural-style for 

plastic UIs by combining the toolkit and model-based approaches [Demeure et al. 2008]. 

A “Comet” is capable of self-adapting or being adapted to the context-of-use.  

Comet(s) target the adaptation of individual widgets but does not focus on the 

entire layout. Centralizing the adaptive mechanism could be more scalable than 

defining it in each widget and could make Comets a more interesting solution for 

adaptive UI functionality. Using a widget toolkit to represent the CUI provides good 

control over the UI and could theoretically be used to develop different types of UIs 

that can adapt to any context pillar therefore providing good completeness. The 

extensibility of the adaptive behavior is claimed to be supported through style-sheets 

but the adaptation types are not extensible since each Comet can only adjust its own 

shape, whereas different types of adaptation (e.g., feature-set, navigation, etc.), 

which might be more related to the overall user interface design, cannot be supported 

by this architectural-style. One of the goals of Comet(s) is to sustain UI adaptation at 

any level of abstraction: tasks and concepts, abstract, concrete, and final UI as 

elicited in model-driven approaches [Calvary et al. 2003]. Therefore, the levels of 

abstraction are embodied in what are referred to as the Logical Consistency (LC), 

Logical Model (LM), Physical Model (PM), and technology primitives. Comet(s) does 

not present a means for reading adaptation data from multiple data sources as 

presented by CAMELEON-RT for example. We consider the modeling approach to be 
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poor since it is necessary to have a code-based implementation as opposed to the 

possibility of using interpreted runtime models. Although it is not explicitly described, 

the use of style-sheets can support both direct and indirect adaptations. 

 

DYNAmic MOdel-bAsed user Interface Development (DynaMo-AID) is a design 

process and runtime architecture for devising context-aware UIs and is part of the 

Dygimes UI framework [Coninx et al. 2003]. Its runtime architecture includes three 

major modules namely context monitoring, functional core, and presentation that are 

linked by a dialog controller [Clerckx et al. 2005]. The final UI is rendered from task 

models after adapting them to the operating environment and device. 

DynaMo-AID is limited to WIMP-style UIs and only targets the environment 

context hence has low completeness. The levels of abstraction supported by DynaMo-

AID are restricted to the task model from which the final UI is generated. The 

support of interpreted runtime models provides a good modeling approach but since 

designer input is not supported on the CUI the control over the UI could be negatively 

affected. Adaptive behavior is extensible but is restricted to one type of adaptation, 

namely, the UI dialog. Due to the pervasive nature of its target applications (e.g., 

tourist guide mobile application called Imogl for an open air museum [Clerckx et al. 

2006]), DynaMo-AID only supports direct adaptations and environment sensors as a 

data source. This architecture is particularly criticized for using what is referred to 

as a “Task Tree Forest” [Blouin et al. 2011]. The critics note that since each tree 

corresponds to the tasks possible in a given context, the combinatorial explosion 

would affect the approach’s scalability when it is applied to complex systems.  

 

Supple supports automatic generation of UIs adapted to each user’s abilities (e.g., 

motor and vision), devices, tasks, and preferences [Gajos et al. 2010]. It relies on a 

high-level interface specification, device model, and user traces to generate the UI. 

In terms of completeness Supple’s approach is particularly well suited for box-like 

UIs due to the existence of a vocabulary of interactions for this UI type. However, 

although not tested, its creators indicate that it is not limited to such UI types 

especially if new vocabularies of interactions could be identified [Gajos et al. 2010]. 

Supple interprets and renders UI models at runtime hence making the fulfillment of 

more advanced adaptations easier. Yet, the adopted technique generates the UI from 

a high-level model (one level of abstraction), which prevents designer input from 

being made especially at the CUI level hence provides less control over the UI. The 

inability to have human input at the different levels of abstraction, at least at design-

time, makes the approach difficult to adopt for large-scale systems such as enterprise 

applications. Supple has built-in algorithms for adapting the UI and does not provide 

a means for extending the adaptive behavior through either a visual or code-based 

representation. The only adaptation type supported by Supple is layout optimization. 

Vision and motor capabilities are the primary supported adaptation aspects, and 40 

UI factors (e.g., font size, widget size, etc.) are supported. Supple does not provide a 

means for extending adaptation types, aspects, and factors. Also, it has been criticized 

[Peissner et al. 2012] for exceeding acceptable performance times. This criticism 

could be justified by observing some of its worst-case scenarios that could span over 

30 seconds when computing the most appropriate UI layout. This timing is not 

appropriate for software systems looking for high efficiency. One advantage that 

Supple has over other systems lies in performing true layout optimization due to its 

ability to quantify UI quality. The quantification is achieved by using a cost function 



Adaptive Model-Driven User Interface Development Systems 21 
                                                                                                                                         

 

 
To appear in ACM Computing Surveys, 47, 1, March 2015 

to compare UI versions in order to determine the most optimal one. This approach 

also allows Supple to support trade-off analysis, which was demonstrated for a fixed 

number of adaptation aspects, namely motor and vision capabilities [Gajos et al. 

2007]. Supple is complemented by a system called Arnauld [Gajos and Weld 2005], 

which is responsible for eliciting user preferences in order to adapt the UI at runtime. 

This process could serve as a feedback mechanism but the sole reliance on runtime 

elicitation can be time consuming and might not provide sufficient data in 

comparison to leveraging multiple data sources. Supple primarily targets indirect 

adaptation since it builds up a user-model over time based on preference elicitation. 

 

The Multi-Access Service Platform (MASP) is a UI management system targeting 

ubiquitous UIs for smart homes [Feuerstack et al. 2006]. MASP uses a model-driven 

approach to support: multimodality [Blumendorf et al. 2008], distribution [Blumendorf 

et al. 2007], synchronization [Blumendorf et al. 2006], and adaptation [Schwartze et 

al. 2009]. Although it demonstrates powerful capabilities in UI distribution and 

multimodality, we focus on its adaptation capabilities to stay within our scope. 

Adopting a box-based layout [Feuerstack et al. 2008] for repositioning different UI 

segments at runtime using content scaling prevents widget level feature-adaptation 

and decreases completeness. The modeling approach bases the final UI on generated 

code or markup (apache velocity templates) [Blumendorf et al. 2008] hence allowing 

less advanced adaptations to be performed at runtime as opposed to a fully-dynamic 

approach. MASP uses direct adaptation whenever a context change is detected due to 

the ubiquitous nature of the target smart home systems. The primary adaptation 

type supported by MASP is layouting based on several environment-related aspects 

such as distance and spots (e.g., distance from particular physical objects). Also, a 

limited number of UI adaptation factors are supported (e.g., orientation, size, 

rearrangement of predefined UI groups, etc.) and no means is provided for extending 

the adaptation types, aspects, and factors. As described in its UI construction technique 

[Feuerstack 2008], MASP supports all the levels of abstraction suggested by 

CAMELEON. It also supports designer input on the CUI to provide control over the 

UI. Since it targets ubiquitous applications, MAS ’s data sources are restricted to 

environment sensors as indicated by the 3-Layer architecture [Lehmann et al. 2010]. 

MASP provides a tool to visually divide the layout into boxes but does not support the 

definition of visual and code-based adaptation rules, which could cover a variety of 

layout optimization factors that go beyond changing the font-size, and layout grouping. 

 

One technique uses aspect-oriented modeling (AOM) for adapting UIs [Blouin et al. 

2011] based on the MALAI architecture (reviewed in Section 5).  

This approach requires several UI presentations to be defined at design-time and 

a weaver is used to associate these presentations to instrument classes that handle 

the way the UI functions at runtime. It provides completeness because it targets post-

WIMP UIs and could logically target others as well since the UI is generated to code, 

hence also providing good control over the UI. The adaptive behavior could be extended 

but this can only be done at design-time since the modeling approach relies on code. 

Hence, the UI variations have to be manually defined by the developer. Scalability is 

demonstrated by taming the combinatorial explosion of complex interactive system 

adaptations. The meta-model does not support the addition of adaptation types, aspects, 

and factors. Also, no mechanism is provided for adding adaptive behavior visually. 
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MyUI is a user interface development infrastructure for improving accessibility 

through adaptive UIs [Peissner et al. 2012]. It uses an open pattern repository for 

defining adaptation rules. User interfaces are specified as an abstract model that is 

represented using a notation based on state charts.  

MyUI is presented as a general-purpose infrastructure but it was only demonstrated 

with basic interactive television UIs. It does not support all the levels of abstraction 

suggested by CAMELEON but only relies on an abstract model to automatically 

generate the final UI. Hence, the designer’s control over the UI is reduced due to the 

lack of designer input on the concrete UI. MyUI supports both direct and indirect 

adaptations since the users can swipe a card to let the system identify who they are 

and customize the UI based on their profile; sensors are also able to detect gestures 

(e.g., leaning towards the screen due to poor vision) and perform direct UI adaptations 

accordingly. It is possible to extend the adaptive behavior by modifying the state-chart 

models; however this extension is performed at development-time and could require a 

redeployment of the application. MyUI shows the possibility of supporting multiple 

adaptation data sources since the patterns it uses for defining the adaptation rules 

can embody expert knowledge and the system has the ability to acquire environment 

data using sensors. Although MyUI allows the end-users to reverse the adaptations, 

its feedback mechanism can be enhanced further by offering users an explanation of 

the reason behind the adaptation. The adaptive behavior (adaptation rules) in MyUI 

are defined visually using a state-chart model; however the basic accessibility 

adaptation examples (e.g., changing font-size) that were presented do not demonstrate 

whether the state-chart notation has the potential for defining more advanced 

usability related adaptations such as changing the layout grouping, widget types, etc. 

 

Role-Based UI Simplification (RBUIS) [Akiki et al. 2013d] is a mechanism for 

improving the usability of enterprise application UIs by providing users with a 

minimal feature-set and an optimal layout based on the context-of-use. 

RBUIS is based on the CEDAR architecture. Therefore, it supports direct and 

indirect adaptation and adopts interpreted runtime models as a modeling approach, 

supports the levels of abstraction suggested by CAMELEON, and can be integrated 

into existing systems. RBUIS supports extensible visual and code-based adaptive 

behavior. For example, layout optimization adaptive behavior can be represented by 

dynamic workflows that can incorporate both visual and code-based programming 

constructs. RBUIS implements the trade-off analysis and user-feedback components 

proposed by CEDAR. It also supports the extension of adaptation aspect and factors 

using goal models. The scalability of the algorithms behind RBUIS was evaluated 

using both a complexity analysis and runtime load-testing. RBUIS also partially 

supports the preservation of designer input on the UI using constraints [Akiki et al. 

2013c] and the empowerment of end-users for participating in the adaptation process 

through the means of crowdsourcing [Akiki et al. 2013b]. 

 

We noticed that several criteria were not addressed by the majority of the works 

reviewed in this section. For example, preserving designer input on the UI after the 

adaptive behavior has been applied has only been partially addressed by RBUIS. The 

same applies for empowering new design participants such as engaging and 

leveraging end-user communities to participate in UI adaptation through the means 

of crowdsourcing. Aside from Supple and RBUIS, most techniques do not offer any 

insight on managing trade-offs between possibly conflicting adaptations. Supple, 



Adaptive Model-Driven User Interface Development Systems 23 
                                                                                                                                         

 

 
To appear in ACM Computing Surveys, 47, 1, March 2015 

MyUI, and RBUIS support, to different extents, user feedback on the adapted UI. 

Comet(s) should in concept allow end-users to explore possible design alternatives 

but this point was left for future work. Aside from RBUIS, the techniques we 

reviewed were evaluated by developing new prototype systems instead of showing the 

ability to integrate in existing software systems. For example, MASP was evaluated 

by (re)building home automation applications such as: energy, cooking, and health 

assistants; Supple was evaluated by developing a variety of simple UI dialogs such as: 

email client, ribbon and print dialogs, etc. An extensible number of aspects and factors 

is only supported by RBUIS using goal models, whereas other systems merely 

supported a limited number them. For example, Supple supports 40 factors and 

targets a limited number of adaptation aspects related to physical impairments. We 

noticed that very few works conducted scalability tests, which are important to 

demonstrate if the technique works with large-scale and complex UIs. We present a 

visual evaluation and comparison of the layout optimization techniques in Table III.  

Table IV. Visual Evaluation and Comparison of Adaptive Model-Driven Layout Optimization Techniques 
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AOM (MALAI)                

Comet(s)            ◌    

DynaMo-AID                

Supple                

MASP            ◌    

MyUI            ◌    

RBUIS                

 TOOLS SUPPORTING ADAPTIVE MODEL-DRIVEN USER INTERFACE DEVELOPMENT 7.

The adoption of a technique depends largely on giving researchers and practitioners the 

means of applying ideas without resorting to low level implementation [Cheng et al. 

2009]. The model-driven approach to UI development can serve as a basis for 

devising adaptive UIs due to the possibility of applying different types of adaptations 

onto various levels of abstraction. Yet, implementing adaptive model-driven UIs 

requires the tools that support a definition of the necessary UI models and adaptive 

behavior. In this regard, existing tools still lack many features required for 

supporting adaptive model-driven UIs. This section provides an overview of the state-

of-the-art tools for developing (adaptive) model-driven UIs and evaluates them 

according to their support of the criteria established in Section 4. The evaluation is 

based on the published research work, together with demonstration videos when 

available, and the associated tools publicly available. 
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A survey on model-driven engineering tools for developing UIs [Pérez-Medina et al. 

2007] covered many existing tools including: ACCELEO, AndroMDA, ADT, AToM3, 

DSL Tools, Kermeta, ModFact, Merlin, MDA Workbench, MOFLON, OptimalJ, QVT 

Partners, SmartQVT, and UMLX. One of the conclusions made was that these tools 

are centered on MOF hence support the creation of domain-specific models. However, 

since these tools are not directly meant for supporting (adaptive) model-driven UIs 

we shall not consider them as part of our review. 

There are some commercial tools that partially support MDE in UI development. 

However, these tools were not intended for developing adaptive UIs. Leonardi is one 

example; it provides free (www.leonardi-free.org) and commercial (www.w4.eu) versions 

of its application composer. This composer allows designers to visually define the UIs 

that could be interpreted at runtime. The creators of Leonardi (W4) specify three 

challenges for business applications: offering high quality user experience, developing 

software at low cost with minimum technical experience, and providing scalable 

applications that can accommodate constant business and technological changes. 

They claim to face these challenges by supporting MDE agile in Leonardi. This is 

practically achieved by not generating code from the UI design. Instead, the UI is 

interpreted at runtime through an application engine. We should note that MDE agile 

is plausible but we noticed some limitations in the way it is applied in Leonardi. 

Since it is a rapid application development (RAD) tool, Leonardi only supports the 

concrete UI model and ignores the other levels of abstraction. Also, this tool is coupled 

to a certain extent with Java and does not provide specifications for developing 

application engines for other technologies. Leonardi is not intended for developing 

adaptive UIs hence it does not offer any tool support for adaptive UI behavior. Other 

frameworks and tools with fewer features such as OpenXava (www.openxava.org) and 

Himalia (www.bit.ly/HimaliaDotNet) provide different model-driven approaches for 

developing UIs. Yet, the tight coupling of these tools with programming languages 

(e.g., Java, .NET, etc.) discourages their adoption as a general purpose solution. 

 

Supple [Gajos et al. 2010] partially adopts model-driven UI development hence 

its tools do not support all the levels of abstraction. Basic information on the 

supporting tools is available in the published work but the tools are not available for 

the public. According to Gajos (http://bit.ly/SuppleSystem), Supple is still a research 

prototype and he hopes it could be made available for the public in the future. 

 

Cedar Studio [Akiki et al. 2013a] is an IDE for supporting technical stakeholders 

such as software developers and I.T. personnel in developing and maintaining 

adaptive model-driven enterprise application UIs using the RBUIS [Akiki et al. 2013d] 

mechanism based on the CEDAR [Akiki et al. 2012] architecture. This IDE offers 

control over the UI by allowing stakeholders to provide their input on all the levels of 

abstraction using visual design tools. Cedar Studio also supports visual-design and 

code-editing tools for defining extensible adaptive behavior and adaptation aspects 

and factors. Its integrated testing, visual-design tools, and IDE style UI allow Cedar 

Studio to offer good flexibility. This IDE supports automatic generation between the 

UI models and the mapping rules can be visually changed to offer better predictability. 

 

The ConcurTaskTrees Environment (CTTE) [Mori et al. 2002] (version 2.6.3) 

is a tool for developing and analyzing task models using the CTT notation. CTTE 

provides a mature UI for designers to devise task models. Yet, it does not provide 
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visual-design tools for all the levels of abstraction but it supports the generation of 

the AUI and CUI models in the MARIA   aterno’ et al. 2009] language from the CTT 

task model. The CUI model can be generated as a desktop, mobile, or vocal UI and 

the final UI can be generated to HTML or Voice XML. However, synchronization is not 

supported in case the CUI changes; also, the generation rules cannot be modified from 

the tool hence providing a low predictability of the generated CUI. MARIA also has a 

separate authoring environment to separate several levels of abstraction. Users can 

define transformation rules to map the AUI models to CUI models. These rules can 

be defined through a visual mapping between the AUI and CUI model elements. The 

ability to do so provides a better predictability of the generated outcome. 

 

Several tools were presented for supporting the UIDL UsiXML [Limbourg and 

Vanderdonckt 2004]. Some of these tools such as UsiComp [García Frey et al. 2012] 

and Xplain [García Frey et al. 2010] are early-stage research prototypes that provide 

a limited number of features. The UI models representing the different levels of 

abstraction are designed in UsiComp inside a single document-style panel. This 

approach negatively affects the tool’s flexibility and could prove to be tedious when 

designing UIs for large-scale complex systems. A multi-document IDE style UI could 

be more helpful for developers and I.T. personnel in managing a large number of 

artifacts (e.g., UI models, code files, etc.) in real-life software projects.  

Similar tools such as: SketchiXML [Coyette and Vanderdonckt 2005], IdealXML 

[Montero and López-Jaquero 2007] and GraphiXML [Michotte and Vanderdonckt 2008], 

only target specific phases of the UI construction process hence do not support all the 

levels of abstraction. SketchiXML focuses on transforming manually drawn sketches 

to concrete UI models. This tool can generate a predictable CUI model from the 

drawn sketches especially if predefined widget sketches were loaded into the system. 

IdealXML is concerned with modeling task models and generating the abstract UI 

from them. GraphiXML provides a graphical-design tool for concrete UIs. Even though 

these tools do not support all the levels of abstraction, we consider that they provide a 

good control over the UI since the designer can manipulate the supported models.  

Although it is still a limited prototype, UsiComp is the only one of these tools that 

supports all the levels of abstraction and directly targets UI adaptation by applying 

rules written in the Atlas Transformation Language (ATL) to the UI models. A 

demonstration showed how these rules could adapt the same UI models to different 

platforms (web and mobile). The extensibility of the adaptive behavior is limited since 

no clear demonstration is given on how these rules can be extended using the tool. A 

visual representation of these rules is not supported, and the automated generation and 

synchronization between the different levels of abstraction was not demonstrated. 

 

A few supporting tools were presented as part of MASP [Feuerstack et al. 2008] 

including: a task tree editor as an Eclipse plugin, in addition to a layouting tool and a 

task tree simulator that were offered as standalone tools. The task tree editor can be 

used in order to model the various tasks, which are required to be supported by a 

segment of the application being developed. The layouting tool is used for generating 

layout models. This tool is provided with design models and context-of-use scenarios 

(device properties and user preferences) as input. The tool provides a box-based 

layout allowing the designer to specify properties related to containment, order, 

orientation, and size. However, MASP lacks a canvas-style visual-design tool for 

concrete UIs; this could have a negative impact on its flexibility. Feuerstack et al. 
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[2006] suggested an HTML WYSIWYG editor to alter the UI; this could prove less 

useful than a technology independent concrete UI editing tool when targeting 

multiple presentation technologies. Also, MAS ’s tools only support adding basic 

adaptations that are applied to a layout with predefined box-based groupings. 

 

Gummy supports multi-platform graphical UI development [Meskens et al. 2008]. It 

can generate an initial design for each new platform using a combination of features 

from existing user interfaces. A key objective of Gummy is providing an environment 

that resembles traditional GUI development tools in order to allow designers to 

target new platforms without giving up their current work practices. Additionally, 

Gummy hides the high levels of abstraction from the designers, thereby allowing them 

to operate on the level of abstraction that they are the most familiar with, namely the 

CUI. Having such designer input on the CUI provides more control over the UIs. 

Predictable generation and synchronization is less required because Gummy hides 

the upper levels of abstraction from the designers. However, some characteristics of 

the high-level models, such as the temporal operations on CTT tasks models, are not 

easy to deduce from the CUI. Therefore, it is our belief that it would be better to 

expose these upper-level models for advanced designers who choose to modify them. 

 

Damask [Lin and Landay 2008] is a tool for prototyping cross-device UIs. It is not 

intended for developing adaptive UIs but for supporting design-time automatic UI 

generation. Designers can define a UI layout for one device from which Damask can 

create an abstract model that it uses to generate the UI layouts for other devices. The 

employment of patterns in designing the initial UI helps Damask in generating more 

predictable UIs for other devices. The designers can refine the generated UI layouts if 

necessary, hence providing good control over the UI. Both web-style and voice UIs are 

supported for PCs and mobile phones. 

 

Several criteria were not addressed by most of the surveyed tools. Some tools are 

intended for developing model-driven UIs but do not support adaptation capabilities. 

Hence, the extensibility of the adaptive behavior and the definition of visual and code-

based adaptive behavior are only supported fully by Cedar Studio and partially by 

MASP, UsiComp, and MARIA. Also, apart from Cedar Studio and Leonardi, the tools 

do not provide a mature IDE style UI for easing the development process. 

In spite of the heterogeneity in the types of platforms (e.g., desktop, web, mobile) 

for which UIs can be generated by some tools such as Damask and MARIA, the 

generated UIs only follow the WIMP style. Therefore, the tools we surveyed do not 

demonstrate a high level of completeness since the ability of the tools to support other 

UI types such as multi-touch tabletop UIs was not demonstrated.  

Most of the tools we surveyed provide a visual-design canvas for the models they 

support. Therefore, we considered that they fulfill the expressive match criterion. We 

considered tools such as: Cedar Studio, Damask, Gummy, and Leonardi, which 

support a form of integrated testing to fulfill the flexibility criterion.  

Besides Leonardi, the surveyed tools do not support reusability of UI model parts 

(e.g., the way visual components are reused in traditional IDEs). Also, besides Cedar 

Studio, adaptive behavior reusability is not demonstrated but in principle it could be 

possible in MARIA, MASP, and UsiComp, which support transformation rules. Hence, 

we consider Cedar Studio and Leonardi to fulfill the expressive leverage criterion. 
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Achieving a low threshold and a high ceiling is considered a major criticism 

regarding tools supporting model-driven UI development. Therefore, building models 

graphically was suggested to achieve a lower threshold [Vanderdonckt 2008]. We can 

say that Cedar Studio, Damask, Gummy, and Leonardi potentially have a lower 

threshold than other tools since they promote a development technique that could 

start with the CUI similar to the techniques adopted by classic IDEs, which are more 

familiar to designers. In terms of achieving a high ceiling, since most of the tools are 

research prototypes, it is hard to consider them as alternatives for commercial IDEs 

that can be used to develop real-life software applications. One exception is Leonardi, 

which is a commercial IDE but it does not support adaptive behavior. Hence, we 

considered the surveyed tools to partially fulfill the threshold and ceiling criterion. 

We present a visual evaluation and comparison of the tools we reviewed in Table V.  

Table V. Visual Evaluation and Comparison of Adaptive Model-Driven UI Development Tools 
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CTTE (HIIS Lab)               

Cedar Studio               

Damask               

GraphiXML               

Gummy               

IdealXML               

Leonardi               

MARIA (Tools)               

MASP (Tools)               

SketchiXML               

UsiComp               

 CONCLUSIONS AND FUTURE OUTLOOK 8.

The existing literature presents several systems for developing adaptive model-driven 

UIs in an attempt to address some software usability problems. This review presented 

an overview and evaluation of these systems. We established a set of criteria by either 

directly drawing on recommendations from the literature or indirectly from features 

dispersed in multiple existing systems. We classified the state-of-the-art systems under: 

reference architectures, practical techniques, and supporting tools, and evaluated 

them according to the criteria we established. Based on this evaluation, we draw our 

conclusions and highlight the open issues that can be solved by future research. 

We noticed that there is room for improving upon several criteria in the existing 

state-of-the-art architectures, techniques, and tools. We group the criteria that can be 

improved upon into three categories: end-users, user interface designers, and 
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technical characteristics. In the following paragraphs, we list these criteria, 

highlight their importance, and suggest some directions for future research.  

 

End-users: Empowering new design participants, such as end-users, to participate 

in the UI adaptation process could help in engaging these stakeholders to increase 

their understanding and acceptance and in reducing the time needed to define the 

adaptive behavior. Many end-users are power-users who understand how the system 

works and could provide a valuable contribution towards adapting it to the different 

contexts-of-use. 

A few approaches tried to empower end-users to participate in the UI adaptation 

process through the means of crowdsourcing. Adaptable Gimp [Lafreniere et al. 2011] 

was presented as a socially adaptable alternative of the GNU image manipulation 

tool Gimp. It allows the community to customize its UI by creating task-sets in a wiki. 

Another approach [Nebeling et al. 2012] allows HTML-based UIs to be adapted by 

users through a toolkit with a predefined set of adaptations. The changes are stored 

in a central repository as Cascading Style Sheets (CSS), which could be applied for 

other users with similar needs. However, these approaches are not model-driven 

hence making them technology-dependent and only focus on end-user manual 

adaptation. We presented an approach that complements our RBUIS mechanism by 

engaging end-users to help technical stakeholders in defining the adaptive UI 

behavior using a simple online tool [Akiki et al. 2013b]. Yet, more work is still required 

in this area for creating advanced easy-to-use tools, which expose the adaptation 

techniques to non-technical end-users and allow them to define adaptive behavior. 

Additionally, conducting elaborate empirical studies would help in testing how well 

these tools work with real-life scenarios. 

 

User interface designers: In certain cases, UI designers might want to keep some 

UI characteristics intact even after the adaption occurs. For example, they might 

want to set a minimum size for a textbox based on their knowledge of the nature of 

the business that the UI is supporting. Since such human ingenuity is hard to 

replace with automated behavior, in some particular cases, preserving designer input 

on the UI is important for obtaining a more predictable post-adaptation outcome.  

Some approaches attempted to address this criterion either directly or indirectly. 

Smart templates were proposed for improving automatic generation of ubiquitous 

remote control UIs on mobile devices [Nichols et al. 2004]. Although these templates 

improve the ability to preserve designer input, specifying the various template 

variations could be time consuming and would be classified under adaptable rather 

than adaptive behavior. Raneburger et al. [2012], attempt to enhance the quality of 

generated UIs by using a graphical tree editor to add hints to the transformations 

(e.g., the alignment of a widget). However, UI designers might only work on the CUI 

level and leave the model transformations to the developers. Also, the authors state 

that a graphical WYSIWYG editor would improve on their approach. We presented a 

technique that attempts to preserve designer input by allowing UI designers to add 

constraints on the CUI model [Akiki et al. 2013c]. Yet, more work is still required to 

make this technique applicable in practice. One approach might be to devise an 

algorithm that would convert designer constraints into a constraint problem that can 

be handled by a constraint solver. The output of the solver would become part of the 

adaptation rules in order to maintain the designer’s input.  
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Technical characteristics: The following technical criteria could be improved upon 

by future research targeting the development of support tools that help stakeholders 

in devising adaptive model-driven user interfaces: 

— Completeness is related to the types of UIs (e.g., WIMP, tangible, etc.) that can be 

produced using a UI development system. A system with higher completeness can 

be used for developing a wider variety of software applications. 

— A tool’s threshold and ceiling respectively indicate how steep its learning curve is 

and how advanced its outcome can be. 

The gap in completeness is shared between the existing UI adaptation techniques 

and their supporting tools. Most existing systems focus on adapting WIMP-style UIs 

whereas other UI types are not supported. Providing this support requires meta-

models that can be used to create concrete UI models for different UI types. Also, the 

supporting IDEs would have to provide visual-design tools for defining these models. 

We consider tool support to be crucial for the adoption of adaptive model-driven 

UI development by the software industry. However, the existing tools still require a 

lot of work before they can become comparable to existing commercial or open-source 

integrated development environments such as Visual Studio or Eclipse. The threshold 

and ceiling of these tools need improvement. Several existing tools such as: Cedar 

Studio, Damask, and Gummy are a good starting point. Separate tools coming from 

the same research groups could be merged together such as: GraphiXML, IdealXML, 

and SketchiXML on one hand, and MARIA and CTTE on the other hand. Merging 

these tools will make them more comprehensive before new enhancements can be 

added. More work is required to reach an industrial quality tool that can be used for 

the development of real-life projects. Testing these tools with software developers 

working on such projects could help in measuring their threshold and ceiling and in 

providing insights on ways to improve them. 

 

As a final future outlook, we think that in addition to addressing the gaps that we 

identified in this review, packaging adaptive model-driven UI development systems 

as general-purpose products could increase their usefulness for real-life projects in the 

same way that existing commercial tools are useful for developing traditional UIs. The 

literature already offers several approaches and prototypes. Therefore, it might be 

the appropriate time for a joint venture between academics working on adaptive 

model-driven UIs and industrial partners with a real interest in adopting this 

approach for developing commercial applications. 
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