28 research outputs found

    A Near-Infrared Optical Tomography System Based on Photomultiplier Tube

    Get PDF
    Diffuse optical tomography (DOT) is a rapidly growing discipline in recent years. It plays an important role in many fields, such as detecting breast cancer and monitoring the cerebra oxygenation. In this paper, a relatively simple, inexpensive, and conveniently used DOT system is presented in detail, in which only one photomultiplier tube is employed as the detector and an optical multiplexer is used to alter the detector channels. The 32-channel imager is consisted of 16-launch fibers and 16-detector fibers bundles, which works in the near-infrared (NIR) spectral range under continuous-wave (CW) model. The entire imaging system can work highly automatically and harmoniously. Experiments based on the proposed imaging system were performed, and the desired results can be obtained. The experimental results suggested that the proposed imaging instrumentation is effective

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    A case of catheter related bloodstream infection by Corynebacterium striatum

    No full text
    Background: C. striatum is an innocuous inhabitant of the normal human epithelial and mucosal surfaces. The C. striatum´s thogenic potential is increasingly recognized in our time. Methods: We present a rare case of CRBSI by C. striatum in a 57-yr-old male patient. The patient suffered from many basic diseases and was admitted to hospital of shock. Results: The patient finally died of septic shock caused by CRBSI due to multidrug-resistant C. striatum which responded neither to empiric nor to targeted treatment. Conclusions: C. striatum can cause CRBSI in immunocompromised patients when they were treated by intravenous catheters

    Radio Frequency Drying Behavior in Porous Media: A Case Study of Potato Cube with Computer Modeling

    No full text
    To study the mechanism of heat and mass transfer in porous food material and explore its coupling effect in radio frequency (RF) drying processes, experiments were conducted with potato cubes subjected to RF drying. COMSOL Multiphysics® package was used to establish a numerical model to simulate the heat and mass transfer process in the potato cube and solved with finite element method. Temperature history at the sample center and the heating pattern after drying was validated with experiment in a 27.12 MHz RF heating system. Results showed the simulation results were in agreement with experiments. Furthermore, the temperature distribution and water vapor concentration distribution were correspondent with water distribution in the sample after RF drying. The water concentration within the food volume was non-uniform with a higher water concentration than the corner, the maximum difference of which was 0.03 g·cm−3. The distribution of water vapor concentration in the sample was similar to that of water content distribution since a pressure gradient from center to corner allowed the mass transfer from the sample to the surrounding in the drying process. In general, the moisture distribution in the sample affected the temperature and water vapor concentration distribution since the dielectric properties of the sample were mainly dependent on its moisture content during a drying process. This study reveals the mechanism of RF drying of porous media and provides an effective approach for analyzing and optimizing the RF drying process
    corecore