21 research outputs found

    Encoding of Temporal Sound Features in the Rodent Superior Paraolivary Nucleus

    Get PDF
    The superior paraolivary nucleus (SPON) is a prominent cell group in the mammalian brainstem. SPON neurons are part of a monaural circuit that encodes temporal sound features in the ascending auditory pathway. Such attributes of acoustic signals are critical for speech perception in humans and likely equally as important in animal communication. While basic properties of SPON neurons have been characterized in some detail, a comprehensive examination of mechanisms that underlie their ability to precisely represent temporal information is lacking. Furthermore, little is known of how the SPON impacts its primary target, the inferior colliculus. Combinations of electrophysiological, pharmacological and histological techniques were used to investigate SPON neuronal responses to stimuli whose temporal parameters were systematically varied. In addition, properties of neurons in the inferior colliculus were examined before and after reversible inactivation of the SPON in order to explore its functional role in hearing. An after-hyperpolarization rebound mechanism was shown to generate the hallmark offset response of SPON neurons in vitro. Single-cell labeling techniques provided a detailed morphological description of cell bodies and dendrites and revealed a homogeneous population of neurons. Moreover, subthreshold ionic currents and synaptic neurotransmitter receptor systems were shown to mediate the precision of responses to temporal features of sound in vivo. It was also demonstrated that input from the SPON shapes response properties of inferior colliculus neurons to both periodic and singular temporal stimulus features. Taken together, these results suggest the SPON likely has a substantial role in temporal processing that has not been taken into account in the current understanding of the central auditory system. Demonstrating a functional role for the SPON in hearing will expand our knowledge of neuronal circuits responsible for representing biologically important sounds in both normal hearing and hearing impaired states

    Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus

    No full text
    Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AimThe SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery.MethodsThis was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin.ResultsOverall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P ConclusionOne in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Elective Cancer Surgery in COVID-19–Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study

    No full text

    C. Literaturwissenschaft.

    No full text
    corecore