82 research outputs found

    Matrine Inhibits CNS Autoimmunity Through an IFN-β-Dependent Mechanism

    Get PDF
    Matrine (MAT), a quinolizidine alkaloid component derived from the root of Sophora flavescens, suppresses experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), by inducing the production of immunomodulatory molecules, e.g., IL-10. In an effort to find the upstream pathway(s) of the mechanism underlying these effects, we have tested certain upregulated immunomodulatory molecules. Among them, we found increased levels of IL-27 and IFN-β, one of the first-line MS therapies. Indeed, while low levels of IFN-β production in sera and type I interferon receptor (IFNAR1) expression in spinal cord of saline-treated control EAE mice were detected, they were significantly increased after MAT treatment. Increased numbers of CD11b+IFN-β+ microglia/infiltrating macrophages were observed in the CNS of MAT-treated mice. The key role of IFN-β induction in the suppressive effect of MAT on EAE was further verified by administration of anti-IFN-β neutralizing antibody, which largely reversed the therapeutic effect of MAT. Further, we found that, while MAT treatment induced production of IL-27 and IL-10 by CNS microglia/macrophages, this effect was significantly reduced by IFN-β neutralizing antibody. Finally, the role of IFN-β in MAT-induced IL-27 and IL-10 production was further confirmed in human monocytes in vitro. Together, our study demonstrates that MAT exerts its therapeutic effect in EAE through an IFN-β/IL-27/IL-10 pathway, and is likely a novel, safe, low-cost, and effective therapy as an alternative to exogenous IFN-β for MS

    Minute-cadence Observations of the LAMOST Fields with the TMTS: III. Statistic Study of the Flare Stars from the First Two Years

    Full text link
    Tsinghua University-Ma Huateng Telescopes for Survey (TMTS) aims to detect fast-evolving transients in the Universe, which has led to the discovery of thousands of short-period variables and eclipsing binaries since 2020. In this paper, we present the observed properties of 125 flare stars identified by the TMTS within the first two years, with an attempt to constrain their eruption physics. As expected, most of these flares were recorded in late-type red stars with GBPGRPG_{\rm BP}-G_{\rm RP} > 2.0 mag, however, the flares associated with bluer stars tend to be on average more energetic and have broader profiles. The peak flux (F_peak) of the flare is found to depend strongly on the equivalent duration (ED) of the energy release, i.e., FpeakED0.72±0.04F_{{\rm peak}} \propto {\rm ED}^{0.72\pm0.04}, which is consistent with results derived from the Kepler and Evryscope samples. This relation is likely related to the magnetic loop emission, while -- for the more popular non-thermal electron heating model -- a specific time evolution may be required to generate this relation. We notice that flares produced by hotter stars have a flatter FpeakEDF_{{\rm peak}} \propto {\rm ED} relation compared to that from cooler stars. This is related to the statistical discrepancy in light-curve shape of flare events with different colors. In spectra from LAMOST, we find that flare stars have apparently stronger H alpha emission than inactive stars, especially at the low temperature end, suggesting that chromospheric activity plays an important role in producing flares. On the other hand, the subclass having frequent flares are found to show H alpha emission of similar strength in their spectra to that recorded with only a single flare but similar effective temperature, implying that the chromospheric activity may not be the only trigger for eruptions.Comment: 17 pages, 15 figures, 2 tables, refereed version. For associated data files, see https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/523/219

    Properties and Asteroseismological analysis of a new ZZ ceti discovered by TMTS

    Full text link
    Tsinghua university-Ma Huateng Telescope for Survey (TMTS) aims to discover rapidly evolving transients by monitoring the northern sky. The TMTS catalog is cross-matched with the white dwarf (WD) catalog of Gaia EDR3, and light curves of more than a thousand WD candidates are obtained so far. Among them, the WD TMTS J23450729+5813146 (hereafter J2345) is one interesting common source. Based on the light curves from the TMTS and follow-up photometric observations, periods of 967.113 s, 973.734 s, 881.525 s, 843.458 s, 806.916 s and 678.273 s are identified. In addition, the TESS observations suggest a 3.39 h period but this can be attributed to the rotation of a comoving M dwarf located within 3". The spectroscopic observation indicates that this WD is DA type with Teff = 11778+/-617K,log g = 8.38+/-0.31,mass=0.84+/-0.20Msun and age=0.704+/-0.377 Gyrs. Asteroseismological analysis reveals a global best-fit solution of Teff =12110+/-10K and mass=0.760+/-0.005Msun,consistent with the spectral fitting results, and Oxygen and Carbon abundances in the core center are 0.73 and 0.27, respectively. The distance derived from the intrinsic luminosity given by asteroseismology is 93 parsec, which is in agreement with the distance of 98 parsec from Gaia DR3. Additionally, kinematic study shows that this WD is likely a thick disk star. The mass of its zero-age main-sequence mass is estimated to be 3.08 Msun and has a main-sequence plus cooling age of roughly 900 Myrs.Comment: 10 pages, 10 figures, accepted for publication in MNRA

    MetaAdvDet: Towards Robust Detection of Evolving Adversarial Attacks

    Full text link
    Deep neural networks (DNNs) are vulnerable to adversarial attack which is maliciously implemented by adding human-imperceptible perturbation to images and thus leads to incorrect prediction. Existing studies have proposed various methods to detect the new adversarial attacks. However, new attack methods keep evolving constantly and yield new adversarial examples to bypass the existing detectors. It needs to collect tens of thousands samples to train detectors, while the new attacks evolve much more frequently than the high-cost data collection. Thus, this situation leads the newly evolved attack samples to remain in small scales. To solve such few-shot problem with the evolving attack, we propose a meta-learning based robust detection method to detect new adversarial attacks with limited examples. Specifically, the learning consists of a double-network framework: a task-dedicated network and a master network which alternatively learn the detection capability for either seen attack or a new attack. To validate the effectiveness of our approach, we construct the benchmarks with few-shot-fashion protocols based on three conventional datasets, i.e. CIFAR-10, MNIST and Fashion-MNIST. Comprehensive experiments are conducted on them to verify the superiority of our approach with respect to the traditional adversarial attack detection methods.Comment: 10 pages, 2 figures, accepted as the conference paper of Proceedings of the 27th ACM International Conference on Multimedia (MM'19

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore