59 research outputs found

    Hepatitis B Virus Genotype Study in West Africa Reveals an Expanding Clade of Subgenotype A4

    Get PDF
    Hepatitis B virus (HBV) classification comprises up to 10 genotypes with specific geographical distribution worldwide, further subdivided into 40 subgenotypes, which have different impacts on liver disease outcome. Though extensively studied, the classification of subgenotype A sequences remains ambiguous. This study aimed to characterize HBV isolates from West African patients and propose a more advanced classification of subgenotype A. Fourteen HBV full-length genome sequences isolated from patients from The Gambia and Senegal were obtained and phylogenetically analyzed. Phylogenetic analysis of HBV genotype A sequences isolated from Senegalese and Gambian patients exhibited separate clusters from the other known and confirmed subgenotypes A (A1, A2, A6). Most of the sequences (10/14) clustered with an isolate from Cuba, reported as subgenotype A4 (supported by maximal bootstrap value). Four isolates from The Gambia and Senegal clustered separately from all other subgenotypes and samples sequenced in the study. Three of which from The Gambia, designated as an expanding clade of subgenotype A4, exhibited a mean inter-subgenotypic nucleotide divergence over the entire genome sequence higher than 4% in comparison with the other subgenotypes and the other isolates sequenced in the study, except with subgenotype A4 isolates (3.9%), and this was supported by a maximal bootstrap value. The last one from Senegal seemed to be an expanding subgenotype close to the new clade of A4. Amino acid analysis unveiled a novel motif specific to these isolates. This study revealed an expanding evolution of HBV subgenotype A and novel amino acid motifs. It also highlighted the need for a consensus regarding the analysis and classification of HBV sequence

    Biochemical, Structural and Molecular Dynamics Analyses of the Potential Virulence Factor RipA from Yersinia pestis

    Get PDF
    Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip (required for intracellular proliferation) operon (ripA, ripB and ripC) is essential for replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric oxide (NO) levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests that RipA functions as a butyryl-CoA transferase. The 1.9 Å X-ray crystal structure reveals that RipA belongs to the class of Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to a greater understanding of the role of RipA in this unique virulence pathway

    Acute hepatitis C virus infection assessment among chronic hemodialysis patients in the Southwest Parana State, Brazil

    Get PDF
    BACKGROUND: Chronic hemodialysis patients are at higher risk for acquiring hepatitis C virus (HCV). The prevalence varies among different countries and hemodialysis centers. Although guidelines for a comprehensive infection control program exist, the nosocomial transmission still accounts for the new cases of infection. The aim of this study was analyze the follow up of newly acquired acute hepatitis C cases, during the period from January 2002 to May 2005, in the Hemodialysis Center, located in the Southwest region of Parana State, Brazil and to analyze the effectiveness of the measures to restrain the appearance of new cases of acute hepatitis C. METHODS: Patients were analyzed monthly with anti-HCV tests and ALT measurements. Patients with ALT elevations were monitored for possible acute hepatitis C. RESULTS: During this period, 32 new cases were identified with acute hepatitis C virus infection. Blood screening showed variable ALT levels preceding the anti-HCV seroconversion. HCV RNA viremia by PCR analysis was intermittently and even negative in some cases. Ten out of 32 patients received 1 mcg/kg dose of pegylated interferon alfa-2b treatment for 24 weeks. All dialysis personnel were re-trained to strictly follow the regulations and recommendations regarding infection control, proper methods to clean and disinfect equipment were reviewed and HCV-positive patients were isolated. CONCLUSION: Laboratory tests results showed variable ALT preceding anti-HCV seroconversion and intermittent viremia. The applied recommendations contributed importantly to restrain the appearance of new cases of acute hepatitis C in this center and the last case was diagnosed in May 2004

    Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: implications for clinical management

    Get PDF
    Background: Malaria rapid diagnostic tests (RDTs) are now widely used for prompt on-site diagnosis in remote endemic areas where reliable microscopy is absent. Aberrant results, whereby negative test results occur at high parasite densities, have been variously reported for over a decade and have led to questions regarding the reliability of the tests in clinical use. Methods. In the first trial, serial dilutions of recombinant HRP2 antigen were tested on an HRP2-detectiing RDT. In a second trial, serial dilutions of culture-derived Plasmodium falciparum parasites were tested against three HRP2-detecting RDTs. Results: A prozone-like effect occurred in RDTs at a high concentration of the target antigen, histidine-rich protein-2 (above 15,000 ng/ml), a level that corresponds to more than 312000 parasites per L. Similar results were noted on three RDT products using dilutions of cultured parasites up to a parasite density of 25%. While reduced line intensity was observed, no false negative results occurred. Conclusions: These results suggest that false-negative malaria RDT results will rarely occur due to a prozone-like effect in high-density infections, and other causes are more likely. However, RDT line intensity is poorly indicative of parasite density in high-density infections and RDTs should, therefore, not be considered quantitative. Immediate management of suspected severe malaria should rely on clinical assessment or microscopy. Evaluation against high concentrations of antigen should be considered in malaria RDT product development and lot-release testing, to ensure that very weak or false negative results will not occur at antigen concentrations that might be seen clinically

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/

    Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Nonequilibrium thermodynamics and maximum entropy production in the Earth system

    Full text link
    corecore