1,304 research outputs found

    Late-stage diagnosis of HIV infection in Brazilian children: evidence from two national cohort studies

    Full text link
    This study analyzed data from two consecutive retrospective cohort samples (1983 to 1998 and 1999 to 2002) of Brazilian children with AIDS (N = 1,758) through mother-to-child-transmission. Late-stage diagnosis (CDC category C) was investigated in relation to the following variables: year of birth, year of HIV diagnosis, and time periods related to changes in government treatment guidelines. Late-stage diagnosis occurred in 731 (41.6%) of cases and was more prevalent in infants under 12 months of age. The rate of late-stage diagnosis decreased from 48% to 36% between the two periods studied. We also observed a reduction in the proportion of late-stage diagnoses and the time lapse between HIV diagnosis and ART initiation. A significant association was found between timely diagnosis and having been born in recent years (OR = 0.62; p = 0.009) and year of HIV diagnosis (OR = 0.72; p = 0.002/OR = 0.62; p < 0.001). Infants under the age of 12 months were more likely to be diagnosed at a late stage than older children (OR = 1.70; p = 0.004). Despite advances, there is a need to improve the effectiveness of policies and programs focused on improving early diagnosis and management of HIV/AIDS

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR

    Get PDF
    Here we review the role played by transient interactions between multi-functional proteins and their RNA targets in the regulation of mRNA metabolism, and we describe the important function of NMR spectroscopy in the study of these systems. We place emphasis on a general approach for the study of different features of modular multi-domain recognition that uses well-established NMR techniques and that has provided important advances in the general understanding of post-transcriptional regulation

    Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls.</p> <p>Methods</p> <p>Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits.</p> <p>Results</p> <p>We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer.</p> <p>Conclusion</p> <p>Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced by serum in Jurkat cells and the levels of sCD95 in serum could be helpful during the prognosis and treatment of women detected with precancerous lesions or cervical cancer.</p

    Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS

    Get PDF
    This paper reviews the problems encountered in eleven studies of Sr isotope analysis using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) in the period 1995–2006. This technique has been shown to have great potential, but the accuracy and precision are limited by: (1) large instrumental mass discrimination, (2) laser-induced isotopic and elemental fractionations and (3) molecular interferences. The most important isobaric interferences are Kr and Rb, whereas Ca dimer/argides and doubly charged rare earth elements (REE) are limited to sample materials which contain substantial amounts of these elements. With modern laser (193 nm) and MC-ICPMS equipment, minerals with >500 ppm Sr content can be analysed with a precision of better than 100 ppm and a spatial resolution (spot size) of approximately 100 Όm. The LA MC-ICPMS analysis of 87Sr/86Sr of both carbonate material and plagioclase is successful in all reported studies, although the higher 84Sr/86Sr ratios do suggest in some cases an influence of Ca dimer and/or argides. High Rb/Sr (>0.01) materials have been successfully analysed by carefully measuring the 85Rb/87Rb in standard material and by applying the standard-sample bracketing method for accurate Rb corrections. However, published LA-MC-ICPMS data on clinopyroxene, apatite and sphene records differences when compared with 87Sr/86Sr measured by thermal ionisation mass spectrometry (TIMS) and solution MC-ICPMS. This suggests that further studies are required to ensure that the most optimal correction methods are applied for all isobaric interferences

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore