1,080 research outputs found

    A Unifying View of Multiple Kernel Learning

    Full text link
    Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments

    High Altitude test of RPCs for the ARGO-YBJ experiment

    Get PDF
    A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory (Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive Air Showers was studied. Efficiency and time resolution measurements at the pressure and temperature conditions typical of high mountain laboratories, are reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met

    The ARGO-YBJ Experiment Progresses and Future Extension

    Full text link
    Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1km2 is proposed to boost the sensitivity. Hybrid detection with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual specie. Fluorescence light detector array will extend the spectrum measurement above 100PeV where the second knee is located. An energy scale determined by balloon experiments at 10TeV will be propagated to ultra high energy cosmic ray experiments

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1pΓ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters

    Quasinormal modes of Schwarzschild black holes in four and higher dimensions

    Full text link
    We make a thorough investigation of the asymptotic quasinormal modes of the four and five-dimensional Schwarzschild black hole for scalar, electromagnetic and gravitational perturbations. Our numerical results give full support to all the analytical predictions by Motl and Neitzke, for the leading term. We also compute the first order corrections analytically, by extending to higher dimensions, previous work of Musiri and Siopsis, and find excellent agreement with the numerical results. For generic spacetime dimension number D the first-order corrections go as 1n(D3)/(D2)\frac{1}{n^{(D-3)/(D-2)}}. This means that there is a more rapid convergence to the asymptotic value for the five dimensional case than for the four dimensional case, as we also show numerically.Comment: 12 pages, 5 figures, RevTeX4. v2. Typos corrected, references adde

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC

    Get PDF
    We present a measurement of two-particle angular correlations in proton- proton collisions at s√=900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum p T  > 100 MeV and pseudorapidity |η| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to pythia 8 and herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of pythia 6. The data are not satisfactorily described by any of these models

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
    corecore