901 research outputs found

    Self-consistent Black Hole Accretion Spectral Models and the Forgotten Role of Coronal Comptonization of Reflection Emission

    Get PDF
    Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339–4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state's accretion rate. For bright hard states, we show that disk truncation to large scales R ≫ R[subscript ISCO] is unlikely as this would require accretion rates far in excess of the observed [dotM] of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.United States. National Aeronautics and Space Administration (PF5-160144

    NuSTAR and Suzaku X-ray Spectroscopy of NGC 4151: Evidence for Reflection from the Inner Accretion Disk

    Get PDF
    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin a>0.9 accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the inner disk reflection model, and we find that a compact corona is consistent with the observed features.Comment: 20 pages, 12 figures, accepted for publication in Ap

    The Suzaku view of 3C 382

    Get PDF
    We present a long Suzaku observation of 3C 382. A Swift BAT spectrum from the 58-month survey is also analyzed, together with an archival XMM-Newton EPIC exposure. Our main result is the finding with Suzaku of a broad FeK line with a relativistic profile consistent with emission from an accretion disk at tens of gravitational radii from the central black hole. The XIS data indicate emission from highly ionized iron and allow us to set tight, albeit model-dependent, constraints on the inner and outer radii of the disk reflecting region, r_in~10r_g and r_out~20r_g, respectively, and on the disk inclination, i~30deg. Two ionized reflection components are possibly observed, with similar contributions of ~10% to the total continuum. A highly ionized one, with log_xi~3, which successfully models the relativistic line and a mildly ionized one, with log_xi~1.5, which models the narrow Fe K line and high energy hump. When both these components are included, there is no further requirement for an additional black body soft excess below 2keV. The Suzaku data confirm the presence of a warm absorber previously known from grating studies. After accounting for all the spectral features, the intrinsic photon index of the X-ray continuum is ~1.8 with a cutoff energy at ~200keV, consistent with Comptonization models and excluding jet-related emission up to these energies. Comparison of the X-ray properties of 3C 382 and other BLRGs to Seyferts confirms the idea that the distinction between radio-loud and radio-quiet AGN at X-rays is blurred.Comment: Accepted for publication in Ap

    On geometry of cones and some applications

    Get PDF
    In this work we prove that in any normed space, the origin is a denting point of a pointed cone if and only if it is a point of continuity for the cone and the closure of the cone in the bidual space with respect to the weak* topology is pointed. Other related results and consequences are also stated. For example, a criterion to know whether a cone has a bounded base, an unbounded base, or does not have any base; and a result on the existence of super efficient points in weakly compact sets. (C) 2015 Elsevier Inc. All rights reserved.We thank the referee for suggestions that helped to improve the overall aspect of the manuscript. This work has been partially supported by the Generalitat Valenciana project GV/2014/072 (F. Garcia Castano) and by the Ministerio de Economia y Competitividad and FEDER project MTM2014-57838-C2-2-P (V. Montesinos).Garcia Castano, F.; Melguizo Padial, MA.; Montesinos Santalucia, V. (2015). On geometry of cones and some applications. Journal of Mathematical Analysis and Applications. 431(2):1178-1189. https://doi.org/10.1016/j.jmaa.2015.06.029S11781189431

    Shaping point- and mirror-symmetric proto-planetary nebulae by the orbital motion of the central binary system

    Full text link
    We present 3D hydrodynamical simulations of a jet launched from the secondary star of a binary system inside a proto-planetary nebula. The secondary star moves around the primary in a close eccentric orbit. From the gasdynamic simulations we compute synthetic [NII] 6583 emission maps. Different jet axis inclinations with respect to the orbital plane, as well as different orientations of the flow with respect to the observer are considered. For some parameter combinations, we obtain structures that show point- or mirror-symmetric morphologies depending on the orientation of the flow with respect to the observer. Furthermore, our models can explain some of the emission distribution asymmetries that are summarized in the classification given by Soker & hadar (2002).Comment: 15 pages, 3 figures, 2 tables, Accepted in Apj Letter

    The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA

    Get PDF
    We present interferometric CO observations, made with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer, of galaxies from the Extragalactic Database for Galaxy Evolution survey (EDGE). These galaxies are selected from the Calar Alto Legacy Integral Field Area (CALIFA) sample, mapped with optical integral field spectroscopy. EDGE provides good-quality CO data (3σ sensitivity before inclination correction, resolution ∼1.4 kpc) for 126 galaxies, constituting the largest interferometric CO survey of galaxies in the nearby universe. We describe the survey and data characteristics and products, then present initial science results. We find that the exponential scale lengths of the molecular, stellar, and star-forming disks are approximately equal, and galaxies that are more compact in molecular gas than in stars tend to show signs of interaction. We characterize the molecular-to-stellar ratio as a function of Hubble type and stellar mass and present preliminary results on the resolved relations between the molecular gas, stars, and star-formation rate. We then discuss the dependence of the resolved molecular depletion time on stellar surface density, nebular extinction, and gas metallicity. EDGE provides a key data set to address outstanding topics regarding gas and its role in star formation and galaxy evolution, which will be publicly available on completion of the quality assessment.Fil: Bolatto, Alberto. University of Maryland; Estados UnidosFil: Wong, Tony. University of Illinois at Urbana; Estados UnidosFil: Utomo, Dyas. University of California at Berkeley; Estados UnidosFil: Blitz, Leo. University of California at Berkeley; Estados UnidosFil: Vogel, Stuart N.. University of Maryland; Estados UnidosFil: Sánchez, Sebastián F.. Universidad Nacional Autónoma de México; MéxicoFil: Barrera-Ballesteros, Jorge. University Johns Hopkins; Estados UnidosFil: Cao, Yixian. University of Illinois; Estados UnidosFil: Colombo, Dario. Max Planck Institut Fur Radioastronomie; AlemaniaFil: Dannerbauer, Helmut. Universidad de La Laguna; EspañaFil: García-Benito, Rubén. Instituto de Astrofísica de Andalucía; EspañaFil: Herrera-Camus, Rodrigo. Max Planck Institute für Extraterrestrische Physik; AlemaniaFil: Husemann, Bernd. Max-Planck-Institut für Astronomie; AlemaniaFil: Kalinova, Veselina. Max Planck Institut für Radioastronomie; AlemaniaFil: Leroy, Adam K.. Ohio State University; Estados UnidosFil: Leung, Gigi. Max-Planck-Institut für Astronomie; AlemaniaFil: Levy, Rebecca C.. University of Maryland; Estados UnidosFil: Mast, Damian. Observatorio Astronomico de la Universidad Nacional de Cordoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ostriker, Eve. University of Princeton; Estados UnidosFil: Rosolowsky, Erik. University of Alberta; CanadáFil: Sandstrom, Karin M.. University of California at San Diego; Estados UnidosFil: Teuben, Peter. University of Maryland; Estados UnidosFil: Van De Ven, Glenn. Max-Planck-Institut für Astronomie; AlemaniaFil: Walter, Fabian. Max-Planck-Institut für Astronomie; Alemani

    Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy

    Get PDF
    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. Recent observations of large-scale molecular outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the evidence to support these studies, as they directly trace the gas out of which stars form. Theoretical models suggest an origin of these outflows as energy-conserving flows driven by fast AGN accretion disk winds. Previous claims of a connection between large-scale molecular outflows and AGN activity in ULIRGs were incomplete because they were lacking the detection of the putative inner wind. Conversely, studies of powerful AGN accretion disk winds to date have focused only on X-ray observations of local Seyferts and a few higher redshift quasars. Here we show the clear detection of a powerful AGN accretion disk wind with a mildly relativistic velocity of 0.25c in the X-ray spectrum of IRAS F11119+3257, a nearby (z = 0.189) optically classified type 1 ULIRG hosting a powerful molecular outflow. The AGN is responsible for ~80% of the emission, with a quasar-like luminosity of L_AGN = 1.5x10^46 erg/s. The energetics of these winds are consistent with the energy-conserving mechanism, which is the basis of the quasar mode feedback in AGN lacking powerful radio jets.Comment: Revised file including the letter, methods and supplementary information. Published in the March 26th 2015 issue of Natur

    Exceptional AGN-driven turbulence inhibits star formation in the 3C 326N radio galaxy

    Get PDF
    We detect bright [CII]158μm line emission from the radio galaxy 3C 326N at z=0.09, which shows weak star formation (SFR⊙~yr−1) despite having strong H2 line emission and 2×109M⊙ of molecular gas. The [CII] line is twice as strong as the 0-0S(1) 17μm H2 line, and both lines are much in excess what is expected from UV heating. We combine infrared Spitzer and Herschel data with gas and dust modeling to infer the gas physical conditions. The [CII] line traces 30 to 50% of the molecular gas mass, which is warm (70−3. The [CII] line is broad with a blue-shifted wing, and likely to be shaped by a combination of rotation, outflowing gas, and turbulence. It matches the near-infrared H2 and the Na D optical absorption lines. If the wing is interpreted as an outflow, the mass loss rate would be larger than 20M⊙/yr, and the depletion timescale shorter than the orbital timescale (108yr). These outflow rates may be over-estimated because the stochastic injection of turbulence on galactic scales can contribute to the skewness of the line profile and mimic outflowing gas. We argue that the dissipation of turbulence is the main heating process of this gas. Cosmic rays can also contribute to the heating but they require an average gas density larger than the observational constraints. We show that strong turbulent support maintains a high gas vertical scale height (0.3-4kpc) in the disk and can inhibit the formation of gravitationally-bound structures at all scales, offering a natural explanation for the weakness of star formation in 3C 326N. To conclude, the bright [CII] line indicates that strong AGN jet-driven turbulence may play a key role in enhancing the amount of molecular gas (positive feedback) but yet can prevent star formation on galactic scales (negative feedback)
    corecore