69 research outputs found
Semantic learning in autonomously active recurrent neural networks
The human brain is autonomously active, being characterized by a
self-sustained neural activity which would be present even in the absence of
external sensory stimuli. Here we study the interrelation between the
self-sustained activity in autonomously active recurrent neural nets and
external sensory stimuli.
There is no a priori semantical relation between the influx of external
stimuli and the patterns generated internally by the autonomous and ongoing
brain dynamics. The question then arises when and how are semantic correlations
between internal and external dynamical processes learned and built up?
We study this problem within the paradigm of transient state dynamics for the
neural activity in recurrent neural nets, i.e. for an autonomous neural
activity characterized by an infinite time-series of transiently stable
attractor states. We propose that external stimuli will be relevant during the
sensitive periods, {\it viz} the transition period between one transient state
and the subsequent semi-stable attractor. A diffusive learning signal is
generated unsupervised whenever the stimulus influences the internal dynamics
qualitatively.
For testing we have presented to the model system stimuli corresponding to
the bars and stripes problem. We found that the system performs a non-linear
independent component analysis on its own, being continuously and autonomously
active. This emergent cognitive capability results here from a general
principle for the neural dynamics, the competition between neural ensembles.Comment: Journal of Algorithms in Cognition, Informatics and Logic, special
issue on `Perspectives and Challenges for Recurrent Neural Networks', in
pres
K0S and Λ production in Pb-Pb collisions at sNN−−−−√=2.76 TeV
The ALICE measurement of K0S and Λ production at midrapidity in Pb-Pb collisions at sNN−−−√=2.76 TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4 GeV/c (0.6 GeV/c for Λ) to 12 GeV/c. The pT dependence of the Λ/K0S ratios exhibits maxima in the vicinity of 3 GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s√=0.9 TeV and at s√=7 TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2 GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/K0S ratio
Measurement of the non-prompt D-meson fraction as a function of multiplicity in proton-proton collisions at = 13 TeV
The fractions of non-prompt (i.e. originating from beauty-hadron decays) D0
and D+ mesons with respect to the inclusive yield are measured as a function of the
charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of √s =
13 TeV with the ALICE detector at the LHC. The results are reported in intervals of
transverse momentum (pT) and integrated in the range 1 < pT < 24 GeV/c. The fraction
of non-prompt D0 and D+ mesons is found to increase slightly as a function of pT in
all the measured multiplicity intervals, while no significant dependence on the charged-
particle multiplicity is observed. In order to investigate the production and hadronisation
mechanisms of charm and beauty quarks, the results are compared to PYTHIA 8 as well
as EPOS 3 and EPOS 4 Monte Carlo simulations, and to calculations based on the colour
glass condensate including three-pomeron fusion
Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions
Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at root s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p(T)) of 0.2 GeV/c and up to p(T) = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p(T) range 0.5 < p(T) < 26 GeV/c at root s(NN) = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p(T) dependence is observed in pp collisions, where the yield of high-p(T) electrons increases faster as a function of multiplicity than the one of low-p(T) electrons. The measurement in p-Pb collisions shows no p(T) dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations
General balance functions of identified charged hadron pairs of (pi,K,p) in Pb-Pb collisions at 2.76 TeV
First measurements of balance functions (BFs) of all combinations of identified charged hadron ( π , K, p)
pairs in Pb–Pb collisions at √sNN = 2.76 TeV recorded by the ALICE detector are presented. The BF
measurements are carried out as two-dimensional differential correlators versus the relative rapidity
(delta-y) and azimuthal angle (delta-φ) of hadron pairs, and studied as a function of collision centrality. The delta-φ
dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark–gluon plasma.
While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the
longitudinal widths exhibit mixed behaviors: BFs of π π and cross-species pairs narrow significantly in
more central collisions, whereas those of KK and pp are found to be independent of collision centrality.
This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence
of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of
the collision centrality evolution of BF integrals are presented, with the observation that charge balancing
fractions are nearly independent of collision centrality in Pb–Pb collisions. Overall, the results presented
provide new and challenging constraints for theoretical models of hadron production and transport in
relativistic heavy-ion collisions
phi-Meson production at forward rapidity in p-Pb collisions at root s(NN)=5.02 TeV and in pp collisions at root s=2.76 TeV
The first study of phi-meson production in p-Pb collisions at forward and backward rapidity, at a nucleonnucleon centre-of-mass energy root s(NN)= 5.02 TeV, has been performed with the ALICE apparatus at the LHC. The phi-mesons have been identified in the dimuon decay channel in the transverse momentum (p(T)) range 1 <p(T) <7GeV/c, both in the p-going (2.03 <y <3.53) and the Pb-going (-4.46 <y <-2.96) directions - where ystands for the rapidity in the nucleon-nucleon centre-of-mass - the integrated luminosity amounting to 5.01 +/- 0.19nb(-1) and 5.81 +/- 0.20nb(-1), respectively, for the two data samples. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward ratio for f-meson production is measured for 2.96Peer reviewe
Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at root s(NN)=2.76 TeV
We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of root(NN)-N-s = 2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 <k(T) <0.7 GeV/c. We find that the R-side and R-out radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via R-side oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive-indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3 + 1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum R-side oscillations, but systematically underestimate the oscillation magnitude.Peer reviewe
K∗(892)0 and φ(1020) production in p-Pb collisions at √s NN = 8.16 TeV
The production of K*(892)(0) and phi(1020) resonances has been measured in p-Pb collisions at root s(NN) = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval -0.5 8 GeV/c), the R-pPb values of all hadrons are consistent with unity within uncertainties. The R-pPb of K*(892)(0) and phi(1020) at root s(NN) = 8.16 and 5.02 TeV show no significant energy dependence
Hypertriton Production in p-Pb Collisions at √sNN = 5.02 TeV
The study of nuclei and antinuclei production has proven to be a powerful
tool to investigate the formation mechanism of loosely bound states in
high-energy hadronic collisions. The first measurement of the production of
in p-Pb collisions at = 5.02
TeV is presented in this Letter. Its production yield measured in the rapidity
interval -1 < y < 0 for the 40% highest multiplicity p-Pb collisions is . The measurement is compared with the expectations of statistical
hadronisation and coalescence models, which describe the nucleosynthesis in
hadronic collisions. These two models predict very different yields of the
hypertriton in small collision systems such as p-Pb and therefore the
measurement of is crucial to distinguish between them.
The precision of this measurement leads to the exclusion with a significance
larger than 6 of some configurations of the statistical hadronisation,
thus constraining the production mechanism of loosely bound states
Measurement of D-s(+) product ion and nuclear modification factor in Pb-Pb collisions at root S-NN=2.76 TeV
Peer reviewe
- …