210 research outputs found
A new approach to the spaceâtime analysis of big data: application to subway traffic data in Seoul
A prevalent type of big data is in the form of spaceâtime measurements. Cyclostationary empirical orthogonal function (CSEOF) analysis is introduced as an efficient and valuable technique to interpret spaceâtime structure of variability in a big dataset. CSEOF analysis is demonstrated to be a powerful tool in understanding the spaceâtime structure of variability, when data exhibits periodic statistics in time. As an example, CSEOF analysis is applied to the hourly passenger traffic on Subway Line #2 of Seoul, South Korea during the period of 2010â2017. The first mode represents the weekly cycle of subway passengers and captures the majority (~Â 97%) of the total variability. The corresponding loading vector exhibits a typical weekly pattern of subway passengers as a function of time and the locations of subway stations. The associated principal component time series shows that there are two occasions of significant reduction in the amplitude of the weekly activity in each year; these reductions are associated with two major holidaysâlunar New Year and Fall Festival (called Chuseok in Korea). The second and third modes represent daily contrasts in a week and are associated with taking extra days off before or after holidays. The fourth mode exhibits an interesting upward trend, which represents a general decrease in the number of subway passengers during weekdays except for Wednesday and an increase over the weekends.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government(MSIP) (No. 2016R1A2B4008237)
Effect of chitinase- 3- like protein 1 on glucose metabolism: In vitro skeletal muscle and human genetic association study
We investigated the effect of chitinase- 3- like protein 1 (CHI3L1) on glucose metabolism and its underlying mechanisms in skeletal muscle cells, and evaluated whether the observed effects are relevant in humans. CHI3L1 was associated with increased glucose uptake in skeletal muscles in an AMP- activated protein kinase (AMPK)- dependent manner, and with increased intracellular calcium levels via PAR2. The improvement in glucose metabolism observed in an intraperitoneal glucose tolerance test on male C57BL/6J mice supported this association. Inhibition of the CaMKK was associated with suppression of CHI3L1- mediated glucose uptake. Additionally, CHI3L1 was found to influence glucose uptake through the PI3K/AKT pathway. Results suggested that CHI3L1 stimulated the phosphorylation of AS160 and p38 MAPK downstream of AMPK and AKT, and the resultant GLUT4 translocation. In primary myoblast cells, stimulation of AMPK and AKT was observed in response to CHI3L1, underscoring the biological relevance of CHI3L1. CHI3L1 levels were elevated in cells under conditions that mimic exercise in vitro and in exercised mice in vivo, indicating that CHI3L1 is secreted during muscle contraction. Finally, similar associations between CHI3L1 and metabolic parameters were observed in humans alongside genotype associations between CHI3L1 and diabetes at the population level. CHI3L1 may be a potential therapeutic target for the treatment of diabetes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162777/2/fsb220907.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162777/1/fsb220907_am.pd
Evaluation of an Online Physical and Mental Wellbeing Program for UST CRS Students: A Feasibility Study
Introduction: With the recent transition to online learning due to the COVID-19 pandemic, students experience academic difficulties, which affect their wellbeing. There is a need for an online wellbeing intervention program for students to address such concerns. This study aims to evaluate the feasibility and effectiveness of a six-week online educational wellbeing program for the physical and mental wellbeing of the University of Santo Tomas College of Rehabilitation Sciences (UST-CRS) students.
Methods: This is a quasi-experimental one-group pretest-posttest study that recruited UST-CRS students without physical and mental conditions. Physical and mental wellbeing modules developed by experts were deployed using Wix. The International Physical Activity Questionnaire Short Form (IPAQ-SF) and World Health Organisation-Five WellBeing Index (WHO-5) were used for wellbeing assessment, while the Website Grader Tool and survey were used for website evaluation. Descriptive and inferential statistics were conducted using JAMOVI. Alpha was set at 0.05.
Results: Seventeen students participated in the online wellbeing program. Statistically significant improvements in the IPAQ-SF scores on MET-minute for walking (p=0.04; 95% CI=647-1955), total MET-minute activities (p
Discussion: The online wellbeing program is feasible and effective in increasing the physical and mental wellbeing of the students. The findings of this study may guide future experimental studies for online wellbeing programs for university students
A simple DNA stretching method for fluorescence imaging of single DNA molecules
Stretching or aligning DNA molecules onto a surface by means of molecular combing techniques is one of the critical steps in single DNA molecule analysis. However, many of the current studies have focused on λ-DNA, or other large DNA molecules. There are very few studies on stretching methodologies for DNA molecules generated via PCR (typically smaller than 20 kb). Here we describe a simple method of stretching DNA molecules up to 18 kb in size on a modified glass surface. The very low background fluorescence allows efficient detection of single fluorescent dye labels incorporated into the stretched DNA molecules
Rapid DNA mapping by fluorescent single molecule detection
DNA mapping is an important analytical tool in genomic sequencing, medical diagnostics and pathogen identification. Here we report an optical DNA mapping strategy based on direct imaging of individual DNA molecules and localization of multiple sequence motifs on the molecules. Individual genomic DNA molecules were labeled with fluorescent dyes at specific sequence motifs by the action of nicking endonuclease followed by the incorporation of dye terminators with DNA polymerase. The labeled DNA molecules were then stretched into linear form on a modified glass surface and imaged using total internal reflection fluorescence (TIRF) microscopy. By determining the positions of the fluorescent labels with respect to the DNA backbone, the distribution of the sequence motif recognized by the nicking endonuclease can be established with good accuracy, in a manner similar to reading a barcode. With this approach, we constructed a specific sequence motif map of lambda-DNA. We further demonstrated the capability of this approach to rapidly type a human adenovirus and several strains of human rhinovirus
Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases
Postmortem MRI allows brain anatomy to be examined at high resolution and to
link pathology measures with morphometric measurements. However, automated
segmentation methods for brain mapping in postmortem MRI are not well
developed, primarily due to limited availability of labeled datasets, and
heterogeneity in scanner hardware and acquisition protocols. In this work, we
present a high resolution of 135 postmortem human brain tissue specimens imaged
at 0.3 mm isotropic using a T2w sequence on a 7T whole-body MRI scanner.
We developed a deep learning pipeline to segment the cortical mantle by
benchmarking the performance of nine deep neural architectures, followed by
post-hoc topological correction. We then segment four subcortical structures
(caudate, putamen, globus pallidus, and thalamus), white matter
hyperintensities, and the normal appearing white matter. We show generalizing
capabilities across whole brain hemispheres in different specimens, and also on
unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence
at 7T. We then compute localized cortical thickness and volumetric measurements
across key regions, and link them with semi-quantitative neuropathological
ratings. Our code, Jupyter notebooks, and the containerized executables are
publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upennComment: Preprint submitted to NeuroImage Project website:
https://pulkit-khandelwal.github.io/exvivo-brain-upen
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system
OBJECTIVE: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS) of a prosthetic composite material to cpTi grade I having three surface treatments. MATERIAL AND METHODS: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm) were cast and subjected to polishing (P) or sandblasting with either 50 mm (50SB) or 250 mm (250SB) Al(2)O(3). The metal conditioners Metal Photo Primer (MPP), Cesead II Opaque Primer (OP), Targis Link (TL), and one surface modification system Siloc (S), were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ÂșC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ÂșC and 60ÂșC (n=7). All specimens were subjected to SBS test (0.5 mm/min) until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM) and X-ray energy-dispersive spectroscopy (EDS). Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05). RESULTS: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05), while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05). No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05). CONCLUSION: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi
- âŠ