18 research outputs found

    Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry

    Get PDF
    Multimodal imaging enables sensitive measures of the architecture and integrity of the human brain, but the high-dimensional nature of advanced brain imaging features poses inherent challenges for the analyses and interpretations. Multivariate age prediction reduces the dimensionality to one biologically informative summary measure with potential for assessing deviations from normal lifespan trajectories. A number of studies documented remarkably accurate age prediction, but the differential age trajectories and the cognitive sensitivity of distinct brain tissue classes have yet to be adequately characterized. Exploring differential brain age models driven by tissue-specific classifiers provides a hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain biology. We trained machine-learning models to estimate brain age using various combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of white matter microstructure in 612 healthy controls aged 18–87 years. To compare the tissue-specific brain ages and their cognitive sensitivity, we applied each of the 11 models in an independent and cognitively well-characterized sample (n = 265, 20–88 years). Correlations between true and estimated age and mean absolute error (MAE) in our test sample were highest for the most comprehensive brain morphometry (r = 0.83, CI:0.78–0.86, MAE = 6.76 years) and white matter microstructure (r = 0.79, CI:0.74–0.83, MAE = 7.28 years) models, confirming sensitivity and generalizability. The deviance from the chronological age were sensitive to performance on several cognitive tests for various models, including spatial Stroop and symbol coding, indicating poorer performance in individuals with an over-estimated age. Tissue-specific brain age models provide sensitive measures of brain integrity, with implications for the study of a range of brain disorders

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years

    Get PDF
    Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large‐scale studies. In response, we used cross‐sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to infer age‐related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta‐analysis and one‐way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns

    Exploring the associations between physical activity level, cognitive performance, and response to computerized cognitive training among chronic stroke patients

    No full text
    Abstract Background Post‐stroke attentional and working memory deficits are common and represent relevant predictors of long‐term functional recovery and outcome. The individual responses to cognitive rehabilitation and interventions vary between patients and are influenced by multiple factors. Recently, a link between the level of engagement in physical activities and cognitive rehabilitation has been suggested. However, few previous studies have tested the predictive value of physical activity on cognitive performance and response to cognitive training among chronic stroke patients. There is also a lack of knowledge concerning the prognostic value of index stroke characteristics on physical activity in chronic phase. Method In this cross‐sectional and longitudinal study, including stroke survivors suffering mild‐to‐moderate strokes (n = 52, mean age = 70 years), we used Bayesian regression to test the association between cognitive performance and response to a 3‐week intervention with a commonly used computerized cognitive training (CCT) system and baseline physical activity level measured with International Physical Activity Questionnaire. We also tested the association between physical activity level in chronic phase and stroke characteristics, including stroke severity (National Institutes of Health Stroke Scale), ischemic stroke etiology (Trial of Org 10172 in Acute Stroke Treatment), and stroke location (n = 66, mean age = 68 years). For descriptive purposes, we included 104 sex‐ and age‐matched healthy controls (mean age = 69 years). Results The analyses revealed anecdotal evidence of a positive association between overall cognitive performance and daily minutes of sedentary behavior, indicating that better cognitive performance was associated with more daily hours of sitting still. We found no support for an association between cognitive performance and response to CCT with activity level. In addition, the analysis showed group differences in sedentary behavior between patients with small‐vessel disease (n = 20) and cardioembolism (n = 7), indicating more sedentary behavior in patients with small‐vessel disease. There was no further support for a predictive value of index stroke characteristics on physical activity level. Conclusion The results do not support that baseline physical activity level is a relevant predictor of the overall performance or response to CCT in this sample of chronic stroke patients. Similarly, the analyses revealed little evidence for an association between index stroke characteristics and future activity level in patients surviving mild‐to‐moderate stroke

    No add‐on effect of tDCS on fatigue and depression in chronic stroke patients: A randomized sham‐controlled trial combining tDCS with computerized cognitive training

    No full text
    Abstract Background Fatigue and emotional distress rank high among self‐reported unmet needs in life after stroke. Transcranial direct current stimulation (tDCS) may have the potential to alleviate these symptoms for some patients, but the acceptability and effects for chronic stroke survivors need to be explored in randomized controlled trials. Methods Using a randomized sham‐controlled parallel design, we evaluated whether six sessions of 1 mA tDCS (anodal over F3, cathodal over O2) combined with computerized cognitive training reduced self‐reported symptoms of fatigue and depression. Among the 74 chronic stroke patients enrolled at baseline, 54 patients completed the intervention. Measures of fatigue and depression were collected at five time points spanning a 2 months period. Results While symptoms of fatigue and depression were reduced during the course of the intervention, Bayesian analyses provided evidence for no added beneficial effect of tDCS. Less severe baseline symptoms were associated with higher performance improvement in select cognitive tasks, and study withdrawal was higher in patients with more fatigue and younger age. Time‐resolved symptom analyses by a network approach suggested higher centrality of fatigue items (except item 1 and 2) than depression items. Conclusion The results reveal no add‐on effect of tDCS on fatigue or depression but support the notion of fatigue as a relevant clinical symptom with possible implications for treatment adherence and response

    Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes

    No full text
    The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer’s disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields’ genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10–16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies

    Common brain disorders are associated with heritable patterns of apparent aging of the brain

    Get PDF
    Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders
    corecore