1,038 research outputs found

    Population-based study of the association of variants in mismatch repair genes with prostate cancer risk and outcomes.

    Get PDF
    BACKGROUND: Mismatch repair (MMR) gene activity may be associated with prostate cancer risk and outcomes. This study evaluated whether single nucleotide polymorphisms (SNP) in key MMR genes are related to prostate cancer outcomes. METHODS: Data from two population-based case-control studies of prostate cancer among Caucasian and African-American men residing in King County, Washington were combined for this analysis. Cases (n = 1,458) were diagnosed with prostate cancer in 1993 to 1996 or 2002 to 2005 and were identified through the Seattle-Puget Sound Surveillance Epidemiology and End Results cancer registry. Controls (n = 1,351) were age-matched to cases and were identified through random digit dialing. Logistic regression was used to assess the relationship between haplotype-tagging SNPs and prostate cancer risk and disease aggressiveness. Cox proportional hazards regression was used to assess the relationship between SNPs and prostate cancer recurrence and prostate cancer-specific death. RESULTS: Nineteen SNPs were evaluated in the key MMR genes: five in MLH1, 10 in MSH2, and 4 in PMS2. Among Caucasian men, one SNP in MLH1 (rs9852810) was associated with overall prostate cancer risk [odds ratio, 1.21; 95% confidence interval (95% CI), 1.02, 1.44; P = 0.03], more aggressive prostate cancer (odds ratio, 1.49; 95% CI, 1.15, 1.91; P < 0.01), and prostate cancer recurrence (hazard ratio, 1.83; 95% CI, 1.18, 2.86; P < 0.01), but not prostate cancer-specific mortality. A nonsynonymous coding SNP in MLH1, rs1799977 (I219V), was also found to be associated with more aggressive disease. These results did not remain significant after adjusting for multiple comparisons. CONCLUSION: This population-based case-control study provides evidence for a possible association with a gene variant in MLH1 in relation to the risk of overall prostate cancer, more aggressive disease, and prostate cancer recurrence, which warrants replication

    Analysis of recently identified prostate cancer susceptibility loci in a population-based study: Associations with family history and clinical features.

    Get PDF
    Purpose: Two recent genome-wide association studies have highlighted several SNPs purported to be associated with prostate cancer risk. We investigated the significance of these SNPs in a population-based study of Caucasian men, testing the effects of each SNP in relation to family history of prostate cancer and clinicopathological features of disease. Experimental Design: We genotyped 13 SNPs in 1,308 prostate cancer patients and 1,267 unaffected controls frequency matched to cases by five-year age groups. The association of each SNP with disease risk and stratified by family history of prostate cancer and clinicopathological features of disease was calculated using logistic and polytomous regression. Results: These results confirm the importance of multiple previously reported SNPs in relation to prostate cancer susceptibility; 11 of the 13 SNPs were significantly associated with risk of developing prostate cancer. However, none of the SNP associations were of comparable magnitude to that associated with having a first-degree family history of the disease. Risk estimates associated with SNPs rs4242382 and rs2735839 varied by family history, while risk estimates for rs10993994 and rs5945619 varied by Gleason score. Conclusions: Our results confirm that several recently identified SNPs are associated with prostate cancer risk; however the variant alleles only confer a low to moderate relative risk of disease and are generally not associated with more aggressive disease features

    Influence of Large-scale Interplanetary Structures on the Propagation of Solar Energetic Particles: The Multispacecraft Event on 2021 October 9

    Get PDF
    An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R ≲ 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48° east from Earth (ϕ = E48°), STEREO-A (at R = 0.96 au, ϕ = E39°), Solar Orbiter (SolO; at R = 0.68 au, ϕ = E15°), BepiColombo (at R = 0.33 au, ϕ = W02°), and near-Earth spacecraft, regulated the observed intensity-time profiles and the anisotropic character of the SEP event. PSP, STEREO-A, and SolO detected strong anisotropies at the onset of the SEP event, which resulted from the fact that PSP and STEREO-A were in the declining-speed region of the solar wind stream responsible for the SIR and from the passage of a steady magnetic field structure by SolO during the onset of the event. By contrast, the intensity-time profiles observed near Earth displayed a delayed onset at proton energies ≳13 MeV and an accumulation of ≲5 MeV protons between the SIR and the shock driven by the parent coronal mass ejection (CME). Even though BepiColombo, STEREO-A, and SolO were nominally connected to the same region of the Sun, the intensity-time profiles at BepiColombo resemble those observed near Earth, with the bulk of low-energy ions also confined between the SIR and the CME-driven shock. This event exemplifies the impact that intervening large-scale interplanetary structures, such as corotating SIRs, have in shaping the properties of SEP events

    Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer

    Get PDF
    Background: The presence of the TMPRSS2-ERG fusion gene in prostate tumors has recently been associated with an aggressive phenotype, as well as recurrence and death from prostate cancer. These associations suggest the hypothesis that the gene fusion may be used as a prognostic indicator for prostate cancer. Methods: In this study, fluorescent in situ hybridization (FISH) assays were used to assess TMPRSS2-ERG fusion status in a group of 214 prostate cancer cases from two population-based studies. The FISH assays were designed to detect both fusion type (deletion vs. translocation) and the number of fusion copies (single vs. multiple). Genotyping of four ERG and one TMPRSS2 SNPs using germline DNA was also performed in a sample of the cases (n = 127). Results: Of the 214 tumors scored for the TMPRSS2-ERG fusion, 64.5% were negative and 35.5% were positive for the fusion. Cases with the TMPRSS2-ERG fusion did not exhibit reduced prostate cancer survival (HR = 0.92, 95% CI = 0.22-3.93), nor was there a significant difference in causespecific survival when stratifying by translocation or deletion (HR = 0.84, 95% CI = 0.23-3.12) or by the number of retained fusion copies (HR = 1.22, 95% CI = .45-3.34). However, evidence for reduced prostate cancer-specific survival was apparent in those cases whose tumor had multiple copies of the fusion. The variant T allele of the TMPRSS2 SNP, rs12329760, was positively associated with TMPRSS2-ERG fusion by translocation (p = 0.05) and with multiple copies of the gene fusion (p = 0.03). Conclusion: If replicated, the results presented here may provide insight into the mechanism by which the TMPRSS2-ERG gene fusion arises and also contribute to diagnostic evaluations for determining the subset of men who will go on to develop metastatic prostate cancer.This work was supported by NIH grants RO1 CA56678, RO1 CA114524, and P50 CA97186; additional support was provided by the Fred Hutchinson Cancer Research Center and the Intramural Program of the National Human Genome Research Institute

    An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: The power of worldwide collaboration

    Get PDF
    Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA

    The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder

    Get PDF
    Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T-1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered (https://osf.io/73dvy) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore