82 research outputs found

    Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean\u27s Surface

    Get PDF
    The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species. DOI: 10.1371/journal.pone.001680

    Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface

    Get PDF
    The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species

    Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans

    Get PDF
    To better understand the temporal and spatial dynamics of Prochlorococcus populations, and how these populations co-vary with the physical environment, we followed monthly changes in the abundance of five ecotypes—two high-light adapted and three low-light adapted—over a 5-year period in coordination with the Bermuda Atlantic Time Series (BATS) and Hawaii Ocean Time-series (HOT) programs. Ecotype abundance displayed weak seasonal fluctuations at HOT and strong seasonal fluctuations at BATS. Furthermore, stable ‘layered’ depth distributions, where different Prochlorococcus ecotypes reached maximum abundance at different depths, were maintained consistently for 5 years at HOT. Layered distributions were also observed at BATS, although winter deep mixing events disrupted these patterns each year and produced large variations in ecotype abundance. Interestingly, the layered ecotype distributions were regularly reestablished each year after deep mixing subsided at BATS. In addition, Prochlorococcus ecotypes each responded differently to the strong seasonal changes in light, temperature and mixing at BATS, resulting in a reproducible annual succession of ecotype blooms. Patterns of ecotype abundance, in combination with physiological assays of cultured isolates, confirmed that the low-light adapted eNATL could be distinguished from other low-light adapted ecotypes based on its ability to withstand temporary exposure to high-intensity light, a characteristic stress of the surface mixed layer. Finally, total Prochlorococcus and Synechococcus dynamics were compared with similar time series data collected a decade earlier at each location. The two data sets were remarkably similar—testimony to the resilience of these complex dynamic systems on decadal time scales.National Science Foundation (U.S.)Gordon and Betty Moore Foundatio

    The effect of iron- and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean

    Get PDF
    The deep chlorophyll maximum (DCM) is a widespread feature in most stratified, oligotrophic waters. In addition to their well-established importance for many surface phytoplankton communities, more recent evidence suggests that iron, light or co-limitation may also be important drivers for some DCM communities. To test this hypothesis, we describe the results from six grow-out experiments, four from the Equatorial Pacific Ocean (between 150°E and 140°W), one in Western Pacific Warm Pool (9°S, 170°E) and one in the middle of the Tasman Sea (36°S). Photosynthetic efficiency (Fv/Fm) and biomass response, including Chl a and phytoplankton community structure (pennate diatoms, photosynthetic eukaryotes, Synechococcus, Prochlorococcus, and major Prochlorococcus ecotypes), were assessed over five days in control, +Fe, +Light or +Fe +Light treatments. Photosynthetic efficiency did not change dramatically in any of the treatments at any of the locations, except at 0°N 140°W where the control and +Fe bottles had elevated efficiency relative to both +Light treatments. Except for some ecotypes of Prochlorococcus (eMIT9313 and eNATL2A), phytoplankton populations were most strongly limited by light in the DCM. Pennate diatoms and other photosynthetic eukaryotes showed the most enhancement with the addition of iron and light at some stations and may be co-limited, but no phytoplankton populations were enhanced by adding iron alone. Although the duration and magnitude of the responses varied depending on initial macronutrient concentrations, they were generally consistent across the locations sampled. These results suggest that light is the primary limiting resource of the DCM for this vast region, but that iron can play an important additive role in limiting phytoplankton populations in locations where flux to the DCM is reduced

    SMRT Sequencing of Paramecium Bursaria Chlorella Virus-1 Reveals Diverse Methylation Stability in Adenines Targeted by Restriction Modification Systems

    Get PDF
    Chloroviruses (family Phycodnaviridae) infect eukaryotic, freshwater, unicellular green algae. A unique feature of these viruses is an abundance of DNA methyltransferases, with isolates dedicating up to 4.5% of their protein coding potential to these genes. This diversity highlights just one of the long-standing values of the chlorovirus model system; where group-wide epigenomic characterization might begin to elucidate the function(s) of DNA methylation in large dsDNA viruses. We characterized DNA modifications in the prototype chlorovirus, PBCV-1, using single-molecule real time (SMRT) sequencing (aka PacBio). Results were compared to total available sites predicted in silico based on DNA sequence alone. SMRT-software detected N6-methyl-adenine (m6A) at GATC and CATG recognition sites, motifs previously shown to be targeted by PBCV-1 DNA methyltransferases M.CviAI and M. CviAII, respectively. At the same time, PacBio analyses indicated that 10.9% of the PBCV-1 genome had large interpulse duration ratio (ipdRatio) values, the primary metric for DNA modification identification. These events represent 20.6x more sites than can be accounted for by all available adenines in GATC and CATG motifs, suggesting base or backbone modifications other than methylation might be present. To define methylation stability, we cross-compared methylation status of each GATC and CATG sequence in three biological replicates and found ∼81% of sites were stably methylated, while ∼2% consistently lack methylation. The remaining 17% of sites were stochastically methylated. When methylation status was analyzed for both strands of each target, we show that palindromes existed in completely non-methylated states, fully-methylated states, or hemi-methylated states, though GATC sites more often lack methylation than CATG sequences. Given that both sequences are targeted by not just methyltransferases, but by restriction endonucleases that are together encoded by PBCV-1 as virus-originating restriction modification (RM) systems, there is strong selective pressure to modify all target sites. The finding that most instances of non-methylation are associated with hemi-methylation is congruent with observations that hemi-methylated palindromes are resistant to cleavage by restriction endonucleases. However, sites where hemi-methylation is conserved might represent a unique regulatory function for PBCV-1. This study serves as a baseline for future investigation into the epigenomics of chloroviruses and their giant virus relatives

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore