241 research outputs found

    Diagnostic and therapeutic radioisotopes in nuclear medicine: Determination of gamma-ray transmission factors and safety competencies of high-dense and transparent glassy shields

    Full text link
    We present the findings of an extensive examination on newly designed CdO-rich and transparent glass shields for nuclear medicine facilities in lieu of traditional and unfavorable materials, such as lead and concrete. Gamma-ray transmission factors of newly designed glass shields are determined using a variety of diagnostic, therapeutic, and research radioisotopes, including 67Ga, 57Co, 111In, 201Tl, 99mTc, 51Cr, 131I, 58Co, 137Cs, 133Ba, and 60Co. A general-purpose Monte Carlo code MCNPX (version 2.7.0) is used to determine the attenuation parameters of different material thicknesses. Next, the findings are compared using a standard concrete shielding material. The results indicate that adding more CdO to the glass composition improves the overall gamma-ray attenuation properties. As a result, among the heavy and transparent glasses developed, the C40 sample containing 40% CdO exhibited the best gamma-ray absorption properties against all radioisotopes. Furthermore, the gamma-ray absorption characteristics of this created high-density glass were shown to be better to those of a standard and heavy concrete sample. It can be concluded that the newly developed CdO-rich and transparent glass sample may be used in medical radiation fields where the radioisotopes examined are used in daily clinical and research applications. © 2022 De Gruyter. All rights reserved.Princess Nourah Bint Abdulrahman University, PNU: PNURSP2022R149Funding information: This study was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149)

    The influence of foot geometry on the calcaneal osteotomy angle based on two-dimensional static force analyses

    Get PDF
    Background: Malalignment of the hindfoot can be corrected with a calcaneal osteotomy (CO). A well-selected osteotomy angle in the sagittal plane will reduce the shear force in the osteotomy plane while walking. The purpose was to determine the presence of a relationship between the foot geometry and loading of the calcaneus, which influences the choice of the preferred CO angle. Methods A static free body force analysis was made of the posterior calcaneal fragment in the second half of the stance phase to determine the main loads: the plantar apeunorosis (PA) and Achilles tendon (AT). The third load is on the osteotomy surface which should be oriented such that the shear component of the force is zero. The force direction of the PA and AT was measured on 58 MRIs of the foot, and the force ratio between both structures was taken from the literature. In addition the PA-to-AT force ratio was estimated for different foot geometries to identify the relationship. Results: Based on the wish to minimize the shear force during walking, a mean CO angle was determined to be 33º (SD8) relative to the foot sole. In pes planus foot geometry, the angle should be higher than the mean. In pes cavus foot geometry, the angle should be smaller. Conclusion: Foot geometry, in particular the relative foot heights is a determinant for the individual angle in performing the sliding calcaneal osteotomy. It is recommended to take into account the foot geometry (arch) when deciding on the CO angle for hindfoot correction.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    Get PDF
    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity

    Genome-wide search for breast cancer linkage in large Icelandic non-BRCA1/2 families

    Get PDF
    Abstract Introduction: A significant proportion of high-risk breast cancer families are not explained by mutations in known genes. Recent genome-wide searches (GWS) have not revealed any single major locus reminiscent of BRCA1 and BRCA2, indicating that still unidentified genes may explain relatively few families each or interact in a way obscure to linkage analyses. This has drawn attention to possible benefits of studying populations where genetic heterogeneity might be reduced. We thus performed a GWS for linkage on nine Icelandic multiple-case non-BRCA1/2 families of desirable size for mapping highly penetrant loci. To follow up suggestive loci, an additional 13 families from other Nordic countries were genotyped for selected markers. Methods: GWS was performed using 811 microsatellite markers providing about five centiMorgan (cM) resolution. Multipoint logarithm of odds (LOD) scores were calculated using parametric and nonparametric methods. For selected markers and cases, tumour tissue was compared to normal tissue to look for allelic loss indicative of a tumour suppressor gene. Results: The three highest signals were located at chromosomes 6q, 2p and 14q. One family contributed suggestive LOD scores (LOD 2.63 to 3.03, dominant model) at all these regions, without consistent evidence of a tumour suppressor gene. Haplotypes in nine affected family members mapped the loci to 2p23.2 to p21, 6q14.2 to q23.2 and 14q21.3 to q24.3. No evidence of a highly penetrant locus was found among the remaining families. The heterogeneity LOD (HLOD) at the 6q, 2p and 14q loci in all families was 3.27, 1.66 and 1.24, respectively. The subset of 13 Nordic families showed supportive HLODs at chromosome 6q (ranging from 0.34 to 1.37 by country subset). The 2p and 14q loci overlap with regions indicated by large families in previous GWS studies of breast cancer. Conclusions: Chromosomes 2p, 6q and 14q are candidate sites for genes contributing together to high breast cancer risk. A polygenic model is supported, suggesting the joint effect of genes in contributing to breast cancer risk to be rather common in non-BRCA1/2 families. For genetic counselling it would seem important to resolve the mode of genetic interaction

    A real-time system for biomechanical analysis of human movement and muscle function

    Get PDF
    Mechanical analysis of movement plays an important role in clinical management of neurological and orthopedic conditions. There has been increasing interest in performing movement analysis in real-time, to provide immediate feedback to both therapist and patient. However, such work to date has been limited to single-joint kinematics and kinetics. Here we present a software system, named human body model (HBM), to compute joint kinematics and kinetics for a full body model with 44 degrees of freedom, in real-time, and to estimate length changes and forces in 300 muscle elements. HBM was used to analyze lower extremity function during gait in 12 able-bodied subjects. Processing speed exceeded 120 samples per second on standard PC hardware. Joint angles and moments were consistent within the group, and consistent with other studies in the literature. Estimated muscle force patterns were consistent among subjects and agreed qualitatively with electromyography, to the extent that can be expected from a biomechanical model. The real-time analysis was integrated into the D-Flow system for development of custom real-time feedback applications and into the gait real-time analysis interactive lab system for gait analysis and gait retraining. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11517-013-1076-z) contains supplementary material, which is available to authorized users

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe
    corecore