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Abstract Mechanical analysis of movement plays an

important role in clinical management of neurological and

orthopedic conditions. There has been increasing interest in

performing movement analysis in real-time, to provide

immediate feedback to both therapist and patient. How-

ever, such work to date has been limited to single-joint

kinematics and kinetics. Here we present a software sys-

tem, named human body model (HBM), to compute joint

kinematics and kinetics for a full body model with 44

degrees of freedom, in real-time, and to estimate length

changes and forces in 300 muscle elements. HBM was used

to analyze lower extremity function during gait in 12 able-

bodied subjects. Processing speed exceeded 120 samples

per second on standard PC hardware. Joint angles and

moments were consistent within the group, and consistent

with other studies in the literature. Estimated muscle force

patterns were consistent among subjects and agreed qual-

itatively with electromyography, to the extent that can be

expected from a biomechanical model. The real-time

analysis was integrated into the D-Flow system for devel-

opment of custom real-time feedback applications and into

the gait real-time analysis interactive lab system for gait

analysis and gait retraining.

Keywords Gait � Movement analysis � Biomechanics �
Real-time � Virtual reality

1 Introduction

Biomechanical analysis of human movement has become

an important tool for basic research and for clinical man-

agement of orthopedic and neurological conditions. Clini-

cal movement analysis is traditionally performed off-line

by processing of previously recorded raw motion and force

data, resulting in a laboratory or gait report to the clinician

who makes treatment decisions. Clinically relevant infor-

mation in the report typically includes the time histories of

biomechanical variables such as joint angles (kinematics)

and joint moments (kinetics) [15]. In recent years, mus-

culoskeletal models have been used to provide additional

information about muscle length changes [2] and muscle

forces [8, 9, 12, 30].

A real-time biomechanical analysis, as opposed to a

report that is generated during post-processing, would

create unique opportunities for both the patient and the

therapist to interact in real-time with biomechanical data

during patient examination or treatment. Clinicians and

physical therapists could benefit from a real-time visuali-

zation and quantification of specific motion variables, as

well as from having additional information about internal
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forces and moments which would remain otherwise fun-

damentally invisible. Furthermore, such biomechanical

data can also be presented to the patient in real-time, to

help them perform therapeutic exercises more effectively

than could be done with verbal or tactile feedback from a

physical therapist [10].

Custom applications have been developed for feedback

training using specific variables computed in real-time,

such as a single joint angle [3] or a single joint moment

[25]. To make real-time computation feasible, approxi-

mations are often used that neglect certain mechanical

effects, such as inertial terms in the equations of motion

[25]. Real-time commercial systems are currently limited

to kinematic variables (joint angles) [3, 27] and possibly

joint moments, but do not include muscle variables.

Although angles and moments can be a useful surrogate for

tissue loads and muscle recruitment that are relevant to

orthopedic or neurological rehabilitation, an analysis at the

muscle level is needed for a full understanding [8, 9]. This

is, however, computationally demanding because muscle

forces must be estimated simultaneously for all muscles in

a limb, or ideally, in the whole body [8, 9]. Consequently,

currently available software systems for analysis of muscle

function (Anybody, www.anybodytech.com; and OpenSim

[8]) do not perform real-time analysis.

In this paper we present a full human body model

(HBM) that can produce a real-time analysis of 3D kine-

matics, kinetics, and muscle function. The goals of this

paper are (1) to present the model and the methods of

computation, and (2) to present results from a group of

able-bodied subjects.

2 Methods

2.1 Numerical methods

Within the HBM, the processing pipeline consists of

inverse kinematics, low-pass filtering, inverse dynamics,

muscle kinematics (length change and moment arms), and

muscle force estimation (Fig. 1). In order to keep up with

an input stream of 120 frames per second (fps), which is

typical for inverse dynamic analysis, the total computation

time for all processing steps must be \8.33 ms per frame.

The kinematic model in HBM consists of 16 rigid body

segments that are coupled by joints, with a total of 44

kinematic degrees of freedom. Subject-specific joint cen-

ters and axes are calculated from 3D coordinates of

markers attached to anatomical landmarks, while the sub-

ject is in an initialization pose. Details can be found in

‘‘Supplemental Material’’. Inertial properties for all body

segments are estimated during initialization from segment

lengths and total body mass using published regression

equations [6]. Forward kinematic equations were generated

to express the global 3D position r~iðqÞ of a marker i as a

function of the 44 generalized coordinates q. Given a set of

marker coordinates r~i;meas measured by the motion capture

system, the inverse kinematic problem is to find the model

pose q that best fits the marker data. This was formulated

as a nonlinear least-squares problem:

q ¼ arg min
q

XN

i¼1

r~iðqÞ � r~i;meas

�� ��2 ð1Þ

A full body marker set consisting of N = 47 markers

was defined (see ‘‘Supplemental Material’’) to provide

redundancy and robustness against occasional marker

dropout which is inevitable in real-time motion capture.

After solving (1), the estimated body pose is processed by a

real-time low-pass filter (second order Butterworth) that

outputs the smoothed pose q as well as the generalized

velocities _q and generalized accelerations €q. Details on the

filter and its implementation are presented elsewhere [29].

The user would set the cutoff frequency of the filter based

on the bandwidth of the movement that is being studied.

Force platform data were processed with the same filter to

prevent impact artifacts in the subsequent inverse dynamic

calculations [16].

In the inverse dynamics processing step, a vector s of

unknown forces and moments, associated with the kine-

matic degrees of freedom, is solved from the multibody

equations of motion:

s ¼MðqÞ€qþ cðq; _qÞ þ BðqÞsext ð2Þ

where M is a square mass matrix, and c are terms related to

Coriolis and centrifugal effects and gravity. The final term

represents measured external forces (force plate data). Joint

power was calculated as the product of joint moment and

angular velocity. Separate equations were used to compute

the full 6-DOF intersegmental loads at the knee, and these

loads were expressed in the reference frame of the shank.

A total of 300 muscles are presently included in the

model, based on previously published musculoskeletal

models: 43 muscle elements in each lower extremity [7],

102 in each arm [4], and 10 in the spine [17]. The coupling

between muscles and skeleton was represented by poly-

nomials that compute total muscle–tendon length L as a

function of skeleton pose q:

LðqÞ ¼
XNterms

i¼1

ci

YNDOF

j¼1

q
Eij

i ð3Þ

The number of terms will depend on how much detail is

required to represent the function LðqÞ. Based on the

principle of virtual work [1], the muscle moment arm dk

with respect to a joint angle k is computed analytically by

partial differentiation:
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dk ¼ �
oLðqÞ

dqk

¼ �
XNterms

i¼1

ciEik

YNDOF

j¼1

q
Eij�dkj

i ð4Þ

where dkj is the Kronecker delta. Coefficients ci and

exponents Eij were obtained by stepwise regression to fit

the polynomial model to moment arms obtained from

OpenSim [8] for a sufficiently large set of skeleton poses q.

The stepwise regression added successively terms (up to a

maximum order) to the polynomial until difference in

moment arm between polynomial and Opensim result was

reduced to \2 mm. The muscle shortening velocity was

computed as the dot product of moment arms d and

generalized velocities _q:

v ¼ � dLðqÞ
dt
¼ �

X

k

oLðqÞ
oqk

dqk

dt
¼ dT _q: ð5Þ

The final processing step performed static optimization

to simultaneously estimate the forces F in all muscle

elements. The optimization problem is formulated as a

quadratic programming problem [9, 30]:

F ¼ arg min
F

PNmuscles

i¼1

Vi
Fi

Fmax;i

� �2

subject to
DðqÞF ¼ s

Fi� 0

� ð6Þ

where Fmax;i is the maximal force that muscle i can produce

and Vi is the muscle volume, which was assumed to be

proportional to the product of maximal force and fiber

length. These muscle properties were taken from the ori-

ginal models [4, 7, 17]. Weighting of the optimization

objective by muscle volume is required to make the solu-

tions independent of the level of discretization of the

muscular anatomy [14]. The matrix DðqÞ contains the

moment arms dij of muscle j with respect to kinematic

variable i, which are dependent on joint angles q and

computed using (4). Power generation of each muscle is

now easily calculated as the product of muscle force and

shortening velocity (5).

2.2 Implementation

The HBM was implemented as a software library with a

C/C?? application programming interface (API), coded

with specific emphasis on real-time computation. C code

for the forward kinematic model in (1) was generated using

Autolev (Online Dynamics, Sunnyvale, CA, USA). The

nonlinear optimization problem in (1) was solved with the

Levenberg–Marquardt algorithm [20], with a Jacobian

matrix for the forward kinematic model that was generated

by symbolical differentiation in Autolev. The solution of

each frame was used as the initial guess for the next frame.

Solver iterations were terminated after a specified compu-

tation time, to ensure real-time performance. Autolev also

generated the C code to compute the joint moments using

(2). The static optimization problem (6) was solved with a

recurrent neural network [32], simulated numerically with

the forward Euler method up to a specified computation

time for each frame. The result of each frame was used as

initial condition for the next frame.

HBM was integrated in two applications. D-Flow (Mo-

tek Medical, Amsterdam, the Netherlands) provides a

software development platform for custom applications

that generate real-time feedback and visualization in a

virtual reality environment [10]. Within D-Flow, biome-

chanical variables obtained from HBM can be visualized

on an avatar using a coloring scheme to illustrate active

muscles, or can used to control events and objects in a

virtual environment providing many possibilities for reha-

bilitation, research and sports (Fig. 2). The lower extremity

portion of HBM was also integrated in GRAIL (Gait

Real-time Analysis Interactive Lab, Motek Medical,

Fig. 1 Data flow within the human body model (HBM)
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Amsterdam, the Netherlands) for clinical gait analysis and

gait retraining. The results presented in this paper were

obtained with HBM embedded in D-Flow version 3.10.1.

2.3 Human subject data

Twelve healthy subjects (11 males and 1 female) volun-

teered to participate in this study which was approved by

the Institutional Review Board of the Cleveland VA

Medical Center. Average subject characteristics were: age

28.3 ± 3.9 years, body mass (with shoes) 75.9 ± 11.2 kg,

and height 175 ± 8 cm. Subjects walked on a split-belt

instrumented treadmill (ADAL3DM-F-COP-Mz, Tecma-

chine, France) for 30 s at their preferred walking speed and

wearing their own shoes. Preferred walking speed was

0.97 ± 0.12 m/s with a gait cycle of 1.23 ± 0.09 s. During

walking, kinematic marker data were collected at 100 Hz

via a 16-camera passive marker motion capture system

(Vicon, Oxford Metrics, UK) with the marker set described

in ‘‘Supplementary Material’’. Ground reaction forces were

collected at 1,000 Hz from load cells in the treadmill.

For data processing, 100 frames were averaged from a

standing trial for initialization of the subject-specific

model. The low-pass filter was set to 6 Hz. Computation

time limits for the iterative solvers were set to 1 ms for

inverse kinematics, and 5 ms for static optimization. HBM

was executed under Windows 7 on a 2.4 GHz Intel i5 CPU.

All output variables were ensemble averaged over the 30-s

Fig. 2 Screen image from the D-Flow system. The distributed

rendering system (DRS) window is normally displayed on a large

projection screen for interaction with patient and therapist. Muscle

activation is visualized as a change in muscle color. The window on

the bottom right is the console for application development, showing

the data flow editor and the connection editor. A simple application is

shown, in which estimated quadriceps forces are used to control a

virtual ball, such that upward motion responds to total force, and

horizontal motion responds to asymmetry. This simple application

would help a patient train to increase their quadriceps activation while

maintaining left–right symmetry. The window on the left is the user

interface for the HBM
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trial to obtain one average gait cycle for each subject, from

right heel strike to right heel strike. It was verified that the

subjects had symmetrical gait, and therefore only the

results from the right lower extremity will be presented.

On one subject, the analysis was performed at various

computation time settings. Error due to premature termi-

nation of the iterative solvers was quantified as the overall

root mean square (RMS) difference in joint angles and

muscle forces between the test result and a result where

there was no time limit for computation.

3 Results

With a computation time limit of 1 ms per frame, the

kinematic solver (1) terminated, on average at 1.24 ms

after doing four iterations. The low-pass filter required

0.07 ms, and the inverse dynamic calculation (2) required

0.41 ms. The iterative solver for the static optimization

problem (6) performed, on average, 230 Euler integration

steps in the allotted time of 5 ms. Errors due to time limits

in the iterative solvers are shown in Fig. 3. At real-time

speed settings, the errors due to premature termination of

the iteration process were\0.01� for kinematics and\5 %

for muscle forces. Figure 3 can be used to determine how

these errors would change when the code is executed on

faster or slower computer hardware, or when time limits

are adjusted to a different frame rate for the streaming raw

data.

Figure 4 (top panels) shows the lower extremity joint

angles, moments, and powers obtained from all subjects.

When available, results from the literature [24] were

superimposed for comparison. Intersegmental knee loads

are presented in the bottom panels of Fig. 4.

Muscle forces, length changes, shortening velocities,

and powers in the lower extremity and spine are presented

in Fig. 5 for 16 selected muscles, with electromyography

(EMG) data from the literature [31] for visual comparison.

All results, including those not shown in figures, are

available as ‘‘Supplementary Material’’.

4 Discussion

We have developed a system that performs a full biome-

chanical analysis of human movement in real-time. The

analysis that is performed by the system is identical to

existing approaches for inverse kinematic analysis [8],

inverse dynamic analysis [30], and muscle force estimation

[30]. The real-time performance is not achieved by sim-

plifications of the model or the analysis, but by several

innovations in computational methods to solve the analysis.

Because the software does not need the capability to solve

other models, the kinematic model and inverse dynamic

model could be coded symbolically using the Autolev

system. The resulting C code had a length of several

megabytes, but was free from overhead due to loops, tests

and branches, and function calls, and required only several

milliseconds to execute. Muscle moment arm calculations

were accelerated by using polynomials (3) that acted as

lookup tables to produce results that were, for practical

purposes, identical to the more time-consuming geometri-

cal calculations performed by Opensim [8]. The static

optimization problem to estimate muscle forces was solved

by an iterative method [32] that eliminates the need to

solve large systems of linear equations. It has been proved

that this method produces the same solution as conven-

tional methods for quadratic programming [32], when

iterated long enough. In real-time applications, the initial

guess is the result of the previous frame, and already very

close to the correct solution. This allows us to terminate the

iterations when the available computation time has been

used up. Figure 3 shows that within 5 ms the solution is, on

average, already within 5 % of the exact solution which

would be reached when the algorithm is given unlimited

computation time.

As configured, the total time to perform all model-based

analyses was 6.72 ms, well within the requirement for real-

time processing of streaming raw data at 120 fps, and a lag

time that is sufficiently short for feedback and training

applications. The kinematic analysis was hardly affected by

allowing only 1 ms of computation, and could even be

Fig. 3 Errors in joint angles

and muscle forces as a function

of the allowed computation time

in, respectively, the kinematic

solver (1) and the static

optimization (6). Results are

presented for one representative

subject. Arrows indicate the

settings that are normally used

for real-time analysis
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done at higher camera frame rates (when available) to

maximize the benefit of noise reduction by low-pass fil-

tering for estimation of velocities and accelerations. After

the low-pass filtering, however, bandwidth is reduced and

inverse dynamic analysis and static optimization can be

performed at lower frame rate without loss of accuracy.

This would reduce the load on the processor, or improve

accuracy, or allow more complex models to be solved.

A low-pass filter was used to prevent noise in the inverse

dynamic results, but unlike offline filtering, a time lag is

inevitable in a real-time filter. The second order real-time

Butterworth filter has a phase delay of 0.22/f, where f is the

corner frequency [29]. With the 6 Hz filter that was used

for the gait data, this amounts to 37 ms or about 4 % of the

gait cycle. The results presented in Figs. 4 and 5 were not

corrected for this delay; the results are presented as they

would appear in a real-time application. This 4 % delay

should be kept in mind when interpreting these results or

comparing them to results from other studies.

Joint angles and moments (Fig. 4) showed the typical

features that are usually seen in mechanical analysis of gait

[24]. Differences between studies are inevitable because of

study population and test protocol. Our results show lower

knee and ankle moments (normalized to body mass) than

[24] which is not surprising because of shoes and a higher

length–mass ratio in adults. Hip moments are affected by

the choice of reference frame [23]. We reported the joint

moments in a joint coordinate system, rather than the thigh

reference frame as in [24]. Other modeling assumptions

have an affect as well, such as the definition of joint centers

and joint axes. Details of the data processing can affect

results. Our system, and Opensim [8], both use redundant

marker sets to suppress to effect of soft tissue motion,

while existing commercial systems for clinical movement

analysis, such as used in [24], do not. The resulting dif-

ferences can be substantial, but do not always interfere

with clinical applications. The current practice is that each

laboratory obtains their own normal reference data, using

Fig. 4 The top two rows show lower extremity joint angles and

moments obtained with the human body model (HBM) from the 12

able-bodied subjects walking at preferred speed. Each curve repre-

sents one subject’s mean gait cycle. The shaded area represents mean

and standard deviation from a study on children [24], for those

variables that were available. Other joint-related variables are

available in HBM, but not shown: joint angular velocity, and joint

power generation. The bottom two rows show the inter-segmental

loads at the knee, acting on the shank segment, and expressed using

the axes of the shank reference frame: X (anterior), Y (lateral), and

Z (superior)
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their study population, study protocol, and software sys-

tem. The question may still be raised which system pro-

duces a more ‘‘correct’’ result, but this is outside of the

scope of this paper.

Intersegmental forces and moments are useful for

orthopedic questions related to joint injury. We have not yet

implemented this for all joints in the model, but we do have

this information available for the knee joint (Fig. 4), where

these variables have been shown to be relevant to the risk of

ACL injury [13] and progression of osteoarthritis [3, 25].

The ability to calculate knee joint loads and provide feed-

back on these variables in real time can help athletes and

patients modify these variables via gait retraining exercises

[3, 25]. Future versions of the software will provide infor-

mation about intersegmental loads at all joints.

Estimated muscle forces (Fig. 5) had peaks that coin-

cided with peaks in normal EMG [31] for most muscles,

notable exceptions being the Sartorius and Rectus Femoris

muscles. Similar relationships between muscle force and

EMG are found in other modeling studies of walking [12,

28]. Perfect correlation can not be expected because EMG

measures activation, not force. When there are major dis-

crepancies in timing of peaks, however, it is likely that the

force estimate is not correct. This can be caused by errors

in the moment arms of the muscle in the model, or by the

assumption that muscle force is distributed according to an

Fig. 5 Forces and length changes for 16 muscle groups. EMG

patterns from the literature [31] are shown for comparison, with the

area under the EMG-time curve shaded. Amplitudes of the EMG

patterns were scaled to coincide with the amplitude of estimated

muscle force. Other muscle-related variables are available in HBM,

but not shown: velocity of length change, power generation, and

muscle activation (F/Fmax)
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optimization principle as stated in Eq. (6). These results

show that users must be cautious when using the muscle

force estimates, especially for certain muscles.

Analysis of muscle contraction kinematics and muscle

forces is not yet well established in clinical movement

analysis, but there are large potential benefits. For instance,

information about muscle length change during gait can

assist surgical planning for patients with cerebral palsy [2].

In stroke patients, estimation of muscle forces during gait

can help identify specific deficits and compensatory strat-

egies [19]. Software tools are already available for such

analyses (Anybody and OpenSim) but these tend to be

research-oriented and not sufficiently fast or user-friendly

for clinical applications. Our system is, at this time, the

only system that can perform muscle force estimation in

real time. It is important that these estimates are validated

before the system is applied clinically, and the validation

must be done with a well-designed study that is relevant to

the clinical question.

We performed the muscle force estimation using static

optimization (6). This does not take into account the force–

length or force–velocity properties, or internal dynamics of

the muscles. Some of these properties are included in the

OpenSim and Anybody systems, but this increases the

computational cost but may not significantly improve the

results in clinical applications [18]. The quadratic cost

function [30] was chosen over the classical cubic cost

function [5], mainly because it allowed us to use an efficient

real-time solution method [32]. While the choice of cost

function is subject of active research, the results of a static

optimization seem to be rather robust with respect to the

choice of cost function [11, 26]. A promising alternative is

the minmax criterion [21], which would allow a real-time

implementation but may lead to discontinuities in the muscle

force trajectories [22]. A fundamental limitation of model-

based muscle force estimation, as presented here, is that the

same generic muscle models are used for all subjects. We

assume standard anatomy (moment arms) and standard

muscle strengths. Therefore, muscle force estimates may be

biased towards normal in patients with neurological prob-

lems, muscle weakness, or pain. An approach to overcome

such limitations was recently proposed [33], but this requires

extensive patient calibration protocols which would be

impractical in routine clinical use.

In conclusion, we have shown that a full biomechanical

analysis of joint and muscle function can be obtained in

real time, and that results are consistent between subjects

and resemble previously published results. Real-time pro-

cessing offers the unique opportunity for interactive use of

biomechanical movement analysis in which the patient and

therapist not only interact with each other, but also with

biomechanical information that is presented to them in real

time using advanced visualization methods (Fig. 2).
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