74 research outputs found
Energy spectra of quantum rings
Ring geometries have fascinated experimental and theoretical physicists over
many years. Open rings connected to leads allow the observation of the
Aharonov-Bohm effect, a paradigm of quantum mechanical phase coherence. The
phase coherence of transport through a quantum dot embedded in one arm of an
open ring has been demonstrated. The energy spectrum of closed rings has only
recently been analysed by optical experiments and is the basis for the
prediction of persistent currents and related experiments. Here we report
magnetotransport experiments on a ring-shaped semiconductor quantum dot in the
Coulomb blockade regime. The measurements allow us to extract the discrete
energy levels of a realistic ring, which are found to agree well with
theoretical expectations. Such an agreement, so far only found for few-electron
quantum dots, is here extended to a many-electron system. In a semiclassical
language our results indicate that electron motion is governed by regular
rather than chaotic motion, an unexplored regime in many-electron quantum dots.Comment: 10 pages, 4 figure
Revealing the magnetic field in a distant galaxy cluster: discovery of the complex radio emission from MACS J0717.5 +3745
Aims. To study at multiple frequencies the radio emission arising from the
massive galaxy cluster MACS J0717.5+3745 (z=0.55). Known to be an extremely
complex cluster merger, the system is uniquely suited for an investigation of
the phenomena at work in the intra-cluster medium (ICM) during cluster
collisions. Methods. We use multi-frequency and multi-resolution data obtained
with the Very Large Array radio telescope, and X-ray features revealed by
Chandra, to probe the non-thermal and thermal components of the ICM, their
relations and interactions. Results. The cluster shows highly complex radio
emission. A bright, giant radio halo is detected at frequencies as high as 4.8
GHz. MACS J0717.5+3745 is the most distant cluster currently known to host a
radio halo. This radio halo is also the most powerful ever observed, and the
second case for which polarized radio emission has been detected, indicating
that the magnetic field is ordered on large scales.Comment: 14 pages, 13 figures, Astronomy and Astrophysics, accepte
Cosmology Using Cluster Internal Velocity Dispersions
We compare the distribution of internal velocity dispersions of galaxy
clusters for an observational sample to those obtained from a set of N-body
simulations of seven COBE-normalised cosmological scenarios: the standard CDM
(SCDM) and a tilted (n=0.85) CDM (TCDM) model, a CHDM model with 25% of massive
neutrinos, two low-density LCDM models with Omega_0=0.3 and 0.5, two open OCDM
models with Omega_0=0.4 and 0.6. Simulated clusters are observed in projection
so as to reproduce the main observational biases and are analysed by applying
the same algorithm for interlopers removal and velocity dispersion estimate as
for the reference observational sample. Velocity dispersions for individual
clusters can be largely affected by observational biases in a model-dependent
way: models in which clusters had less time to virialize show larger
discrepancies between 3D and projected velocity dispersions. From the
comparison with real clusters we find that both SCDM and TCDM largely
overproduce clusters. The CHDM model marginally overproduces clusters and
requires a somewhat larger sigma_8 than a purely CDM model in order to produce
the same cluster abundance. The LCDM model with Omega_0=0.3 agrees with data,
while the open model with Omega_0=0.4 and 0.6 underproduces and marginally
overproduces clusters, respectively.Comment: 28 pages, LaTeX uses Elsevier style file, 7 postscript figures (3
bitmapped to lower res.) included. Submitted to New Astronom
A search for steep spectrum radio relics and halos with the GMRT
Context: Diffuse radio emission, in the form of radio halos and relics,
traces regions in clusters with shocks or turbulence, probably produced by
cluster mergers. Some models of diffuse radio emission in clusters indicate
that virtually all clusters should contain diffuse radio sources with a steep
spectrum. External accretion shocks associated with filamentary structures of
galaxies could also accelerate electrons to relativistic energies and hence
produce diffuse synchrotron emitting regions. Here we report on Giant Metrewave
Radio Telescope (GMRT) observations of a sample of steep spectrum sources from
the 74 MHz VLSS survey. These sources are diffuse and not associated with
nearby galaxies.
Aims: The main aim of the observations is to search for diffuse radio
emission associated with galaxy clusters or the cosmic web.
Methods: We carried out GMRT 610 MHz continuum observations of unidentified
diffuse steep spectrum sources.
Results: We have constructed a sample of diffuse steep spectrum sources,
selected from the 74 MHz VLSS survey. We identified eight diffuse radio sources
probably all located in clusters. We found five radio relics, one cluster with
a giant radio halo and a radio relic, and one radio mini-halo. By complementing
our observations with measurements from the literature we find correlations
between the physical size of relics and the spectral index, in the sense that
smaller relics have steeper spectra. Furthermore, larger relics are mostly
located in the outskirts of clusters while smaller relics are located closer to
the cluster center.Comment: 20 pages, 26 figures, accepted for publication in A&A on October 7,
200
Decaying Dark Matter in Supersymmetric Model and Cosmic-Ray Observations
We study cosmic-rays in decaying dark matter scenario, assuming that the dark
matter is the lightest superparticle and it decays through a R-parity violating
operator. We calculate the fluxes of cosmic-rays from the decay of the dark
matter and those from the standard astrophysical phenomena in the same
propagation model using the GALPROP package. We reevaluate the preferred
parameters characterizing standard astrophysical cosmic-ray sources with taking
account of the effects of dark matter decay. We show that, if energetic leptons
are produced by the decay of the dark matter, the fluxes of cosmic-ray positron
and electron can be in good agreements with both PAMELA and Fermi-LAT data in
wide parameter region. It is also discussed that, in the case where sizable
number of hadrons are also produced by the decay of the dark matter, the mass
of the dark matter is constrained to be less than 200-300 GeV in order to avoid
the overproduction of anti-proton. We also show that the cosmic gamma-ray flux
can be consistent with the results of Fermi-LAT observation if the mass of the
dark matter is smaller than nearly 4 TeV.Comment: 24 pages, 5 figure
GLAST: Understanding the High Energy Gamma-Ray Sky
We discuss the ability of the GLAST Large Area Telescope (LAT) to identify,
resolve, and study the high energy gamma-ray sky. Compared to previous
instruments the telescope will have greatly improved sensitivity and ability to
localize gamma-ray point sources. The ability to resolve the location and
identity of EGRET unidentified sources is described. We summarize the current
knowledge of the high energy gamma-ray sky and discuss the astrophysics of
known and some prospective classes of gamma-ray emitters. In addition, we also
describe the potential of GLAST to resolve old puzzles and to discover new
classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by
K.S. Cheng and G.E. Romer
Achieving conservation outcomes in plant mitigation translocations: the need for global standards
Many countries have legislation intended to limit or offset the impact of anthropogenic disturbance and development on threatened plants. Translocations are often integral to those mitigation policies. When translocation is used exclusively to mitigate development impacts, it is often termed a âmitigation translocation.â However, both the terminology and processes vary regarding interpretation and application, resulting in inconsistent standards, often leading to poorly planned and implemented projects. These mitigation projects rarely achieve the intended âno net lossâ of protected species due to issues with timelines and procedures that result in the mortality of translocated individuals. Instead, such projects are often process driven, focused on meeting legislative requirements which enable the development to proceed, rather than meaningful attempts to minimise the ecological impact of developments and demonstrate conservation outcomes. Here, we propose to reframe mitigation translocations as conservation driven, ensuring best practice implementation and hence, a quantified no net loss for impacted species. These methods include redefining the term mitigation translocation to include conservation objectives and outlining issues associated with the mitigation translocation processes worldwide. We also nominate global standards of practice to which all proposals should adhere, to ensure each project follows a trajectory towards quantified success, with genuine impact mitigation. These proposed standards focus on building efficient translocation plans and improving governance to facilitate a transition from project centred to ecology-driven translocation. Employment of these standards is relevant to development proponents, government regulators, researchers, and translocation practitioners and will increase the likelihood of conservation gains within the mitigation translocation sector
High-performance liquid chromatographyâtandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6Â years (2002â2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well
Planck 2018 results: IX. Constraints on primordial non-Gaussianity
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and optimal modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following final results: flocalNL= -0.9 \ub1 5.1; fequilNL= -26 \ub1 47; and forthoNL= -38 \ub1 24 (68% CL, statistical). These results include low-multipole (4 64 \u2113 < 40) polarization data that are not included in our previous analysis. The results also pass an extensive battery of tests (with additional tests regarding foreground residuals compared to 2015), and they are stable with respect to our 2015 measurements (with small fluctuations, at the level of a fraction of a standard deviation, which is consistent with changes in data processing). Polarizationonly bispectra display a significant improvement in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperature-based results and they give excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider a large number of additional cases, such as scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The nonprimordial lensing bispectrum is, however, detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5\u3c3. Beyond estimates of individual shape amplitudes, we also present model-independent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum shape is glocalNL= (-5.8 \ub1 6.5)
7 104(68% CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of different early-Universe scenarios that generate primordial NG, including general single-field models of inflation, multi-field models (e.g. curvaton models), models of inflation with axion fields producing parity-violation bispectra in the tensor sector, and inflationary models involving vector-like fields with directionally-dependent bispectra. Our results provide a high-precision test for structure-formation scenarios, showing complete agreement with the basic picture of the CDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial seed perturbations
- âŠ