75 research outputs found

    An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    Get PDF
    One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs) as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate

    Hybrid feature selection method based on particle swarm optimization and adaptive local search method

    Get PDF
    Machine learning has been expansively examined with data classification as the most popularly researched subject. The accurateness of prediction is impacted by the data provided to the classification algorithm. Meanwhile, utilizing a large amount of data may incur costs especially in data collection and preprocessing. Studies on feature selection were mainly to establish techniques that can decrease the number of utilized features (attributes) in classification, also using data that generate accurate prediction is important. Hence, a particle swarm optimization (PSO) algorithm is suggested in the current article for selecting the ideal set of features. PSO algorithm showed to be superior in different domains in exploring the search space and local search algorithms are good in exploiting the search regions. Thus, we propose the hybridized PSO algorithm with an adaptive local search technique which works based on the current PSO search state and used for accepting the candidate solution. Having this combination balances the local intensification as well as the global diversification of the searching process. Hence, the suggested algorithm surpasses the original PSO algorithm and other comparable approaches, in terms of performance

    A Fuzzy-Based Context-Aware Misbehavior Detecting Scheme for Detecting Rogue Nodes in Vehicular Ad Hoc Network

    Get PDF
    A vehicular ad hoc network (VANET) is an emerging technology that improves road safety, traffic efficiency, and passenger comfort. VANETs’ applications rely on co-operativeness among vehicles by periodically sharing their context information, such as position speed and acceleration, among others, at a high rate due to high vehicles mobility. However, rogue nodes, which exploit the co-operativeness feature and share false messages, can disrupt the fundamental operations of any potential application and cause the loss of people’s lives and properties. Unfortunately, most of the current solutions cannot effectively detect rogue nodes due to the continuous context change and the inconsideration of dynamic data uncertainty during the identification. Although there are few context-aware solutions proposed for VANET, most of these solutions are data-centric. A vehicle is considered malicious if it shares false or inaccurate messages. Such a rule is fuzzy and not consistently accurate due to the dynamic uncertainty of the vehicular context, which leads to a poor detection rate. To this end, this study proposed a fuzzy-based context-aware detection model to improve the overall detection performance. A fuzzy inference system is constructed to evaluate the vehicles based on their generated information. The output of the proposed fuzzy inference system is used to build a dynamic context reference based on the proposed fuzzy inference system. Vehicles are classified into either honest or rogue nodes based on the deviation of their evaluation scores calculated using the proposed fuzzy inference system from the context reference. Extensive experiments were carried out to evaluate the proposed model. Results show that the proposed model outperforms the state-of-the-art models. It achieves a 7.88% improvement in the overall performance, while a 16.46% improvement is attained for detection rate compared to the state-of-the-art model. The proposed model can be used to evict the rogue nodes, and thus improve the safety and traffic efficiency of crewed or uncrewed vehicles designed for different environments, land, naval, or air

    Longevity-Related Gene Transcriptomic Signature in Glioblastoma Multiforme

    Get PDF
    Glioblastoma multiforme (GBM) (grade IV astrocytoma) has been assumed to be the most fatal type of glioma with low survival and high recurrence rates, even after prompt surgical removal and aggressive courses of treatment. Transcriptional reprogramming to stem cell-like state could explain some of the deregulated molecular signatures in GBM disease. The present study aimed to quantify the expression profiling of longevity-related transcriptional factors SOX2, OCT3/4, and NANOG to evaluate their diagnostic and performance values in high-grade gliomas. Forty-four specimens were obtained from glioblastoma patients (10 females and 34 males). Quantitative real-time polymerase chain reaction was applied for relative gene expression quantification. In silico network analysis was executed. NANOG and OCT3/4 mRNA expression levels were significantly downregulated while that of SOX2 was upregulated in cancer compared to noncancer tissues. Receiver operating characteristic curve analysis showed high diagnostic performance of NANOG and OCT3/4 than SOX2. However, the aberrant expressions of the genes studied were not associated with the prognostic variables in the current population. In conclusion, the current study highlighted the aberrant expression of certain longevity-associated transcription factors in glioblastoma multiforme which may direct the attention towards new strategies in the treatment of such lethal disease

    Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images

    Get PDF
    The primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given a training set of X-ray images with affected lung regions labeled. An X-ray input to the system undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary of the lung, using either a fully-automated segmentation routine or manual delineation provided by the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as the radius increased. The overall CAD system combined the estimated Gibbs energy information from all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees all produced inferior results compared to the proposed neural network used in this CAD system. The experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians to determine which patients might require more intensive clinical care, such a mechanical respiratory support

    Perspectives, practices, and challenges of online teaching during COVID-19 pandemic: A multinational survey

    Get PDF
    The result of the movement restrictions during the COVID-19 pandemic was an impromptu and abrupt switch from in-person to online teaching. Most focus has been on the perception and experience of students during the process. The aim of this international survey is to assess staffs' perspectives and challenges of online teaching during the COVID-19 lockdown. Cross-sectional research using a validated online survey was carried out in seven countries (Brazil, Saudi Arabia, Jordan, Indonesia, India, the United Kingdom, and Egypt) between the months of December 2021 and August 2022, to explore the status of online teaching among faculty members during the COVID-19 pandemic. Variables and response are presented as percentages while logistic regression was used to assess the factors that predict levels of satisfaction and the challenges associated with online instruction. A total of 721 response were received from mainly male (53%) staffs. Most respondents are from Brazil (59%), hold a Doctorate degree (70%) and have over 10 years of working experience (62%). Although, 67% and 79% have relevant tools and received training for online teaching respectively, 44% report that online teaching required more preparation time than face-to-face. Although 41% of respondents were uncertain about the outcome of online teaching, 49% were satisfied with the process. Also, poor internet bandwidth (51%), inability to track students' engagement (18%) and Lack of technical skills (11.5%) were the three main observed limitations. Having little or no prior experience of online teaching before the COVID-19 pandemic [OR, 1.58 (95% CI, 1.35–1.85)], and not supporting the move to online teaching mode [OR, 0.56 (95% CI,0.48–0.64)] were two main factors independently linked with dissatisfaction with online teaching. While staffs who support the move to online teaching were twice likely to report no barriers [OR, 2.15 (95% CI, 1.61–2.86)]. Although, relevant tools and training were provided to support the move to online teaching during COVID-19 lockdown, barriers such as poor internet bandwidth, inability to track students’ engagement and lack of technical skills were main limitations observed internationally by teaching staffs. Addressing these barriers should be the focus of higher education institution in preparation for future disruptions to traditional teaching modes

    Molecular detection and characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi infections in dromedary camels (Camelus dromedaries) in Egypt

    Get PDF
    IntroductionFew studies have investigated the occurrence of microeukaryotic gut parasites in dromedary camels in Egypt, and the majority of these investigations are based on microscopic analysis of fecal material.MethodsHerein, we assessed the occurrence, molecular diversity, and zoonotic potential of protozoan (Cryptosporidium spp. and Giardia duodenalis) and microsporidian (Enterocytozoon bieneusi) pathogens in individual fecal samples (n = 102) of dromedary camels with (n = 26) and without (n = 76) diarrhea from Aswan Governorate, Upper Egypt. Other factors possibly associated with an increased risk of infection (geographical origin, sex, age, and physical condition) were also analyzed. The SSU rRNA or ITS genes were targeted by molecular (PCR and Sanger sequencing) techniques for pathogen detection and species identification.Results and discussionThe most abundant species detected was G. duodenalis (3.9%, 4/102; 95% CI: 1.1–9.7), followed by Cryptosporidium spp. (2.9%, 3/102; 95% CI: 0.6–8.4). All samples tested negative for the presence of E. bieneusi. Sequence analysis data confirmed the presence of zoonotic C. parvum (66.7%, 2/3) and cattle-adapted C. bovis (33.3%, 1/3). These Cryptosporidium isolates, as well as the four Giardia-positive isolates, were unable to be amplified at adequate genotyping markers (Cryptosporidium: gp60; Giardia: gdh, bg, and tpi). Camels younger than 2 years old were significantly more likely to harbor Cryptosporidium infections. This connection was not statistically significant, although two of the three cryptosporidiosis cases were detected in camels with diarrhea. The spread of G. duodenalis infections was unaffected by any risk variables studied. This is the first report of C. parvum and C. bovis in Egyptian camels. The finding of zoonotic C. parvum has public health implications since camels may function as sources of oocyst pollution in the environment and potentially infect livestock and humans. Although preliminary, this study provides useful baseline data on the epidemiology of diarrhea-causing microeukaryotic parasites in Egypt. Further research is required to confirm and expand our findings in other animal populations and geographical regions of the country

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore