89 research outputs found

    Siderite Dissolution in Mars-analog Brines: Kinetics and Reaction Products

    Get PDF
    This study examines siderite (FeCO3) reactivity in MgCl2 and MgSO4 brines with varying salt concentrations (0.01M, 1M, and 3M) at both acidic (pH ∼ 2 and pH ≤ 2) and near-neutral (pH ∼ 7) conditions. We measured aqueous Fe concentrations through time to determine dissolution rates and characterized the solid reaction products with scanning electron microscopy, electron dispersive X-ray spectroscopy, and Raman spectroscopy. Iron-based siderite dissolution rates at pH 2 were equivalent in the 0.01M and 1M MgSO4 brines and slower in 3M MgSO4; rates in the MgCl2 brines slow systematically with increasing brine concentration for equivalent initial pH values. Fe-based dissolution rates could not be determined in the neutral pH experiments due to precipitation of iron (hydr)oxide phases. After 1 day in acidic brines, abundant etch pits were observed; however, in the neutral experiments, siderite was identified with Raman spectroscopy even after 1 yr of dissolution along with a range of iron (hydr)oxide phases. Scanning electron microscopy imaging of the neutral experiment products found Mg-sulfate brines produced a chaotic surface texture. Therefore, micron-scale textural observations could be used to discriminate between alteration in chloride and sulfate brines. Initial iron release rates were similar in dilute brines, but decreased by less than an order of magnitude in the two highest-concentration pH 2 brine experiments; therefore, siderite-bearing assemblages exposed to acidic fluids, regardless of salinity, would likely dissolve completely over geologically short periods of time, thus erasing siderite and likely other carbonate minerals from the geologic record.Funding was provided by NASA grant #NNX13AG75G and the School of Geosciences at the University of Oklahoma.Ye

    Red-green-bleached redox interfaces in the proximal Permian Cutler red beds: implications for regional fluid alteration

    Get PDF
    Siliciclastic strata of the Colorado Plateau attract attention for their striking red, green, bleached, and variegated colors that potentially record both early depositional and later diagenetic events. We investigated the proximal-most strata of the Paradox Basin, from their onlap contact with the Precambrian basement of the Uncompahgre Plateau to the younger Cutler strata exposed within 10 km of the Uncompahgre Plateau to attempt to understand the significance of the striking colors that occur here. These strata preserve a complex geology associated with buried paleorelief and sediment-related permeability variations at a major basin-uplift interface. Strata exposed within ∼1.5 km of the onlap contact exhibit a pervasive drab color in contrast to the generally red colors that predominate farther from this front. In-between, strata commonly host variegated red/green/bleached intercalations. Thin-section petrography, SEM, XRD, Raman spectroscopy, Mössbauer spectroscopy, and whole-rock geochemistry of samples representing different color variations from demonstrate that water–rock interactions charged the rocks with Fe(II) that persists primarily in the phyllosilicate fraction. Color variations reflect grain-size differences that allowed the reduction of fluids from regional fault and basement/fill contacts to permeate coarser-grained Cutler sediments. Hematite and chlorite occur in both red and green sediments but are absent in the bleached sediments. Pervasive hematite in both red and green layers suggests that sediments were hematite-rich before later alteration. Chlorite and smectite are elevated in green samples and inversely correlated with biotite content. Green coloration is generally associated with 1) coarser grain sizes, 2) spatial association with basement contacts, 3) elevated smectite and/or chlorite, 4) less total Fe but greater Fe(II)/Fe(III) primarily in the phyllosilicate fraction, and 5) uranium enrichment. The bleached coloration reflects the removal of pigmentary Fe(III) oxide, while the green coloration is due to the removal of pigmentary hematite and the abundance of Fe(II)-bearing phyllosilicates. Abundant mixed-layer and swelling clays such as smectite, illite/smectite, and chlorite/smectite (including tosudite) dominate the mineralogy of the clay fraction. These results are consistent with other studies demonstrating fault-associated fluid alteration in the Paradox Basin region. However, the pervasive greening was not observed in many of these studies and appears to reflect the unique aspects of the paleovalley system and the importance of biotite alteration to Fe(II)-bearing phyllosilicates

    Modelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars

    Get PDF
    We calculate transport timescales of martian methane and investigate the effect of potential release mechanisms into the atmosphere using a numerical model that includes both Fickian and Knudsen diffusion. The incorporation of Knudsen diffusion, which improves on a Fickian description of transport given the low permeability of the martian regolith, means that transport timescales from sources collocated with a putative martian water table are very long, up to several million martian years. Transport timescales also mean that any temporally varying source process, even in the shallow subsurface, would not result in a significant, observable variation in atmospheric methane concentration since changes resulting from small variations in flux would be rapidly obscured by atmospheric transport. This means that a short-lived 'plume' of methane, as detected by Mumma et al. (2009) and Webster et al. (2014), cannot be reconciled with diffusive transport from any reasonable depth and instead must invoke alternative processes such as fracturing or convective plumes. It is shown that transport through the martian regolith will cause a significant change in the isotopic composition of the gas, meaning that methane release from depth will produce an isotopic signature in the atmosphere that could be significantly different than the source composition. The deeper the source, the greater the change, and the change in methane composition in both δ13C and δD approaches -1000 ‰ for sources at a depth greater than around 1 km. This means that signatures of specific sources, in particular the methane produced by biogenesis that is generally depleted in 13CH4 and CH3D, could be obscured. We find that an abiogenic source of methane could therefore display an isotopic fractionation consistent with that expected for biogenic source processes if the source was at sufficient depth. The only unambiguous inference that can be made from measurements of methane isotopes alone is a measured δ13C or δD close to zero or positive implies a shallow, abiogenic source. The effect of transport processes must therefore be carefully considered when attempting to identify the source of any methane observed by future missions, and the severe depletion in heavier isotopologues will have implications for the sensitivity requirements for future missions that aim to measure the isotopic fractionation of methane in the martian atmosphere

    Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound

    Get PDF
    A model for the formation and distribution of sedimentary rocks on Mars is proposed. The rate-limiting step is supply of liquid water from seasonal melting of snow or ice. The model is run for a O(10^2) mbar pure CO2 atmosphere, dusty snow, and solar luminosity reduced by 23%. For these conditions snow only melts near the equator, and only when obliquity >40 degrees, eccentricity >0.12, and perihelion occurs near equinox. These requirements for melting are satisfied by 0.01-20% of the probability distribution of Mars' past spin-orbit parameters. Total melt production is sufficient to account for aqueous alteration of the sedimentary rocks. The pattern of seasonal snowmelt is integrated over all spin-orbit parameters and compared to the observed distribution of sedimentary rocks. The global distribution of snowmelt has maxima in Valles Marineris, Meridiani Planum and Gale Crater. These correspond to maxima in the sedimentary-rock distribution. Higher pressures and especially higher temperatures lead to melting over a broader range of spin-orbit parameters. The pattern of sedimentary rocks on Mars is most consistent with a Mars paleoclimate that only rarely produced enough meltwater to precipitate aqueous cements and indurate sediment. The results suggest intermittency of snowmelt and long globally-dry intervals, unfavorable for past life on Mars. This model makes testable predictions for the Mars Science Laboratory rover at Gale Crater. Gale Crater is predicted to be a hemispheric maximum for snowmelt on Mars.Comment: Submitted to Icarus. Minor changes from submitted versio

    Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars

    Get PDF
    Water played a major role in the formation and alteration of rocks and soils in the Columbia Hills. The extent of alteration ranges from moderate to extensive. Five distinct rock compositional classes were identified; the order for degree of alteration is Watchtower = Clovis >Wishstone = Peace > Backstay. The rover’s wheels uncovered one unusual soil (Paso Robles) that is the most S-rich material encountered. Clovis class rocks have compositions similar to Gusev plains soil but with higher Mg, Cl, and Br and lower Ca and Zn; Watchtower and Wishstone classes have high Al, Ti, and P and low Cr and Ni; Peace has high Mg and S and low Al, Na, and K; Backstay basalts have high Na and K compared to plains Adirondack basalts; and Paso Robles soil has high S and P. Some rocks are corundum-normative, indicating that their primary compositions were changed by loss and/or gain of rock-forming elements. Clovis materials consist of magnetite, nanophase ferric-oxides (npOx), hematite, goethite, Ca-phosphates, Ca- and Mg-sulfates, pyroxene, and secondary aluminosilicates. Wishstone and Watchtower rocks consist of Fe-oxides/oxyhydroxides, ilmenite, Ca-phosphate, pyroxene, feldspar, Mg-sulfates, and secondary aluminosilicates. Peace consists of magnetite, npOx, Mg- and Ca-sulfates, pyroxene, olivine, feldspar, apatite, halides, and secondary aluminosilicates. Paso Robles consists of Fe3+-, Mg-, Ca-, and other sulfates, Ca-phosphates, hematite, halite, allophane, and amorphous silica. Columbia Hills outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements

    Assessment of origin and fate of contaminants along mining-affected Rio Montevecchio (SW Sardinia, Italy): A hydrologic-tracer and environmental mineralogy study

    Get PDF
    Hydrologic tracer techniques were applied to Rio Montevecchio (SW Sardinia, Italy), a stream affected by mine drainage, allowing the calculation of discharge and contaminant loads. Discharge along the stream showed a constant increase throughout the 2.7 km-long study reach, up to 13.6 l/s at the last synoptic point. Calculated loads of mine-related constituents were large, reaching values of 1780 kg/day for, 340 kg/day for Zn, 47 kg/day for Fe, and 50 kg/day for Mn. The difference of the cumulative instream metal loads between the first and the last synoptic sampling points indicated gains of 421 kg/day for Zn, 2080 kg/day for, 56 kg/day for Mn, and 50 kg/day for Fe. The source areas critical for contaminants loading were almost all concentrated in the first 800 meters of the stream, with the exception of Pb, whose loading occurs evenly along the whole study reach. Precipitation of secondary minerals along the streambed was responsible for a very high attenuation of Al and Fe loads (66% and 77%) and affected also and Zn loads, though less effectively. Rio Montevecchio has the second highest metal load among the rivers investigated with tracer techniques in SW Sardinia. In comparison with Rio Irvi, which has one order of magnitude higher metal loads, natural attenuation processes limit the loads in Rio Montevecchio. Results are useful to clarify the hydrogeochemical paths involved in the release and attenuation of pollutants, improving our understanding of stream responses to contamination and aiding development of site-specific remediation actions

    Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

    Get PDF
    Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water–rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars
    • …
    corecore