35 research outputs found

    The clinical and mutational spectrum of B3GAT3 linkeropathy : two case reports and literature review

    Get PDF
    Background: Proteoglycans are large and structurally complex macromolecules which can be found in abundancy in the extracellular matrix and on the surface of all animal cells. Mutations in the genes encoding the enzymes responsible for the formation of the tetrasaccharide linker region between the proteoglycan core protein and the glycosaminoglycan side chains lead to a spectrum of severe and overlapping autosomal recessive connective tissue disorders, collectively coined the glycosaminoglycan linkeropathies'. Results: We report the clinical findings of two novel patients with a complex linkeropathy due to biallelic mutations in B3GAT3, the gene that encodes glucuronosyltransferase I, which catalyzes the addition of the ultimate saccharide to the linker region. We identified a previously reported c.667G>A missense mutation and an unreported homozygous c.416C>T missense mutation. We also performed a genotype and phenotype-oriented literature overview of all hitherto reported patients harbouring B3GAT3 mutations. A total of 23 patients from 10 families harbouring bi-allelic mutations and one patient with a heterozygeous splice-site mutation in B3GAT3 have been reported. They all display a complex phenotype characterized by consistent presence of skeletal dysplasia (including short stature, kyphosis, scoliosis and deformity of the long bones), facial dysmorphology, and spatulate distal phalanges. More variably present are cardiac defects, joint hypermobility, joint dislocations/contractures and fractures. Seven different B3GAT3 mutations have been reported, and although the number of patients is still limited, some phenotype-genotype correlations start to emerge. The more severe phenotypes seem to have mutations located in the substrate acceptor subdomain of the catalytic domain of the glucuronosyltransferase I protein while more mildly affected phenotypes seem to have mutations in the NTP-sugar donor substrate binding subdomain. Conclusions: Loss-of-function mutations in B3GAT3 are associated with a complex connective tissue phenotype characterized by disproportionate short stature, skeletal dysplasia, facial dysmorphism, spatulate distal phalanges and -to a lesser extent- joint contractures, joint hypermobility with dislocations, cardiac defects and bone fragility. Based on the limited number of reported patients, some genotype-phenotype correlations start to emerge

    Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes

    Get PDF
    Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Using Genomic Inbreeding Coefficient Estimates for Homozygosity Mapping of Rare Recessive Traits: Application to Taybi-Linder Syndrome

    Get PDF
    The use of inbred patients whose exact genealogy may not be available is of primary interest in mapping genes involved in rare recessive diseases. We show here that this can be achieved by estimating inbreeding coefficients from the patients’ genomic information and using these estimates to perform homozygosity mapping. We show the interest of the approach by mapping a gene for Taybi-Linder syndrome to chromosome 2q, with the use of a key patient with no genealogical information

    Data from: Frequency and characteristics of MODY 1 (HNF4A mutation) and MODY 5 (HNF1B mutation) - Analysis from the DPV database

    No full text
    Objective. To characterize initial presentation and clinical course of patients with hepatocyte nuclear factor (HNF) 4A- and HNF1B-MODY in a multinational registry. Design, setting and participants. Within the Diabetes Patienten Verlaufsdokumentation (DPV) registry, 44 patients with HNF4A- and 35 patients with HNF1B-MODY were characterized and compared with patients < 20years old with type 1 diabetes (T1D)/type 2 diabetes (T2D). Main outcome measure. Clinical and laboratory parameters, therapy, metabolic control, and extrapancreatic symptoms in patients with HNF1B-MODY. Results. Patients with both MODY types were significantly older than T1D patients at diagnosis (HNF4A, 13.8 years and HNF1B, 13.5 years, vs. T1D, 8.8 years, P<0.0001). Mean C-peptide at diagnosis was higher for HNF4A-MODY than for T1D (1.8 vs. 0.9 ng/ml, P <0.01). 36.4% of patients with HNF4A-MODY and 65.7% of patients with HNF1B-MODY were treated with insulin, 20.5% and 8.6% received oral antidiabetics only (p<0.05 and p<0.01 vs. T2D). At the most recent visit, glycated hemoglobin levels were lower in HNF4A- and HNF1B-MODY compared to T1D (mean, 6.5% and 6.1%) than in T1D. In 40% of patients with HNF1B-MODY, extrapancreatic symptoms were reported. Several clinical predictors previously described to differentiate between MODY and T1D or T2D could be revalidated by logistic regression analyses in this cohort.Conclusion The DPV registry enabled us to precisely characterize phenotype and treatment in these two rare MODY types. Although phenotype of HNF4A-and HNF1B-MODY shows distinct differences to T1D and T2D, 38% of patients were initially misclassified as having T1D or T2D

    Efficacy of the natural oxygen transporter HEMO 2 life ® in cold preservation in a preclinical porcine model of donation after cardiac death

    No full text
    International audienceThe growing use of marginal organs for transplantation pushes current preservation methods toward their limits, and the need for improvement is pressing. We previously demonstrated the benefits of M101, a natural extracellular oxygen carrier compatible with hypothermia, for the preservation of healthy renal grafts in a porcine model of autotransplantation. Herein, we use a variant of this preclinical model to evaluate M101 potential benefits both in static cold storage (CS) and in machine perfusion (MP) preservation in the transplantation outcomes for marginal kidneys. In the CS arm, despite the absence of obvious benefits within the first 2 weeks of follow-up, M101 dose-dependently improved long-term function, normalizing creatininemia after 1 and 3 months. In the MP arm, M101 improved short- and long-term functional outcomes as well as tissue integrity. Importantly, we provide evidence for the additivity of MP and M101 functional effects, showing that the addition of the compound further improves organ preservation, by reducing short-term function loss, with no loss of function or tissue integrity recorded throughout the follow-up. Extending previous observations with healthy kidneys, the present results point at the M101 oxygen carrier as a viable strategy to improve current organ preservation methods in marginal organ transplantation
    corecore