106 research outputs found
Pressure-induced topological phases of KNa₂Bi
This work is licensed under a Creative Commons Attribution 4.0 International License.We report an ab initio study of the effect of hydrostatic pressure and uniaxial strain on electronic properties of KNa 2 Bi, a cubic bialkali bismuthide. It is found that this zero-gap semimetal with an inverted band structure at the Brillouin zone center can be driven into various topological phases under proper external pressure. We show that upon hydrostatic compression KNa 2 Bi turns into a trivial semiconductor with a conical Dirac-type dispersion of electronic bands at the point of the topological transition while the breaking of cubic symmetry by applying a uniaxial strain converts the compound into a topological insulator or into a three-dimensional Dirac semimetal with nontrivial surface Fermi arcs depending on the sign of strain. The calculated phonon dispersions show that KNa 2 Bi is dynamically stable both in the cubic structure (at any considered pressures) and in the tetragonal phase (under uniaxial strain).We acknowledge financial support of the University of the Basque Country UPV/EHU (grant No. GIC13-IT-756-13), the Departamento de Educación del Gobierno Vasco, the Spanish Ministerio de Ciencia e Innovación (Grant No. FIS2010-19609-C02-01), the Spanish Ministry of Economy and Competitiveness MINECO Project FIS2013-48286-C2-1-P, and the Saint Petersburg State University (project No. 15.61.202.2015).Peer Reviewe
Image resonance in the many-body density of states at a metal surface
The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account
Molecular-orbital theory for the stopping power of atoms in the low velocity regime:the case of helium in alkali metals
A free-parameter linear-combination-of-atomic-orbitals approach is presented
for analyzing the stopping power of slow ions moving in a metal. The method is
applied to the case of He moving in alkali metals. Mean stopping powers for He
present a good agreement with local-density-approximation calculations. Our
results show important variations in the stopping power of channeled atoms with
respect to their mean values.Comment: LATEX, 3 PostScript Figures attached. Total size 0.54
Spectral properties of Cs and Ba on Cu(111) at very low coverage: Two-photon photoemission spectroscopy and electronic structure theory
The adsorption of Cs and Ba on Cu(111) is investigated by means of one- and two-photon photoemission experiments and theoretically by first-principles calculations. The spectral properties of these systems, induced by both surface and adatom states, are studied at submonolayer coverage through angle-resolved measurements. A coverage-dependent analysis is also exploited in the assignment of the observed electronic states. The comparison with ab initio calculations allows identification of all the spectral features induced by Cs and Ba chemisorption. The theoretical analysis concerns the limiting single adatom case, treated in an embedding approach with a one-dimensional potential for the surface. The agreement between the calculated density of states and the experimental spectra confirms that the model substrate retains all the relevant physics entering in the adsorption process. The differences between the electronic structures of Cs and Ba on the Cu(111) surface can be attributed to the group-dependent screening of the core potentials as manifested by the ionic radii and ionization potentials (alkali vs alkaline earth)
Induced Charge-Density Oscillations at Metal Surfaces
Induced charge-density (ICD) oscillations at the Cu(111) surface caused by an
external impurity are studied within linear response theory. The calculation
takes into account such properties of the Cu(111) surface electronic structure
as an energy gap for three-dimensional (3D) bulk electrons and a
surface state that forms two-dimensional (2D) electron system. It is
demonstrated that the coexistence of these 2D and 3D electron systems has
profound impact on the ICD in the surface region. In the case of a static
impurity the characteristic ICD oscillations with the decay as a
function of lateral distance, , are established in both electron systems.
For the impurity with a periodically time-varying potential, the novel dominant
ICD oscillations which fall off like are predicted.Comment: 11 pages, 5 figure
Lifetimes of electrons in the Shockley surface state band of Ag(111)
We present a theoretical many-body analysis of the electron-electron (e-e)
inelastic damping rate of electron-like excitations in the Shockley
surface state band of Ag(111). It takes into account ab-initio band structures
for both bulk and surface states. is found to increase more rapidly as
a function of surface state energy E than previously reported, thus leading to
an improved agreement with experimental data
The role of occupied d states in the relaxation of hot electrons in Au
We present first-principles calculations of electron-electron scattering
rates of low-energy electrons in Au. Our full band-structure calculations
indicate that a major contribution from occupied d states participating in the
screening of electron-electron interactions yields lifetimes of electrons in Au
with energies of above the Fermi level that are larger than
those of electrons in a free-electron gas by a factor of . This
prediction is in agreement with a recent experimental study of ultrafast
electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58},
10948 (1998)), where electron transport has been shown to play a minor role in
the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Theory of inelastic lifetimes of low-energy electrons in metals
Electron dynamics in the bulk and at the surface of solid materials are well
known to play a key role in a variety of physical and chemical phenomena. In
this article we describe the main aspects of the interaction of low-energy
electrons with solids, and report extensive calculations of inelastic lifetimes
of both low-energy electrons in bulk materials and image-potential states at
metal surfaces. New calculations of inelastic lifetimes in a homogeneous
electron gas are presented, by using various well-known representations of the
electronic response of the medium. Band-structure calculations, which have been
recently carried out by the authors and collaborators, are reviewed, and future
work is addressed.Comment: 28 pages, 18 figures, to appear in Chem. Phy
Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films
金沢大学理学部金沢大学大学院自然科学研究科計算科学The electronic structure of Bi(001) ultrathin films (thickness 7 bilayers) on Si(111)-7×7 was studied by angle-resolved photoemission spectroscopy and first-principles calculations. In contrast with the semimetallic nature of bulk Bi, both the experiment and theory demonstrate the metallic character of the films with the Fermi surface formed by spin-orbit-split surface states (SSs) showing little thickness dependence. Below the Fermi level, we clearly detected quantum well states (QWSs) at the M̄ point, which were surprisingly found to be non-spin-orbit split; the films are "electronically symmetric" despite the obvious structural nonequivalence of the top and bottom interfaces. We found that the SSs hybridize with the QWSs near M̄ and lose their spin-orbit-split character. © 2006 The American Physical Society
- …