24 research outputs found

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies

    Allergic inflammatory memory in human respiratory epithelial progenitor cells

    No full text
    Barrier tissue dysfunction is a fundamental feature of chronic human inflammatory diseases [superscript 1]. Specialized subsets of epithelial cells—including secretory and ciliated cells—differentiate from basal stem cells to collectively protect the upper airway [superscript 2–4]. Allergic inflammation can develop from persistent activation [superscript 5] of type 2 immunity [superscript 6] in the upper airway, resulting in chronic rhinosinusitis, which ranges in severity from rhinitis to severe nasal polyps [superscript 7]. Basal cell hyperplasia is a hallmark of severe disease [superscript 7–9], but it is not known how these progenitor cells [superscript 2,10,11] contribute to clinical presentation and barrier tissue dysfunction in humans. Here we profile primary human surgical chronic rhinosinusitis samples (18,036 cells, n = 12) that span the disease spectrum using Seq-Well for massively parallel single-cell RNA sequencing [superscript 12], report transcriptomes for human respiratory epithelial, immune and stromal cell types and subsets from a type 2 inflammatory disease, and map key mediators. By comparison with nasal scrapings (18,704 cells, n = 9), we define signatures of core, healthy, inflamed and polyp secretory cells. We reveal marked differences between the epithelial compartments of the non-polyp and polyp cellular ecosystems, identifying and validating a global reduction in cellular diversity of polyps characterized by basal cell hyperplasia, concomitant decreases in glandular cells, and phenotypic shifts in secretory cell antimicrobial expression. We detect an aberrant basal progenitor differentiation trajectory in polyps, and propose cell-intrinsic [superscript 13], epigenetic [superscript 14,15] and extrinsic factors [superscript 11,16,17] that lock polyp basal cells into this uncommitted state. Finally, we functionally demonstrate that ex vivo cultured basal cells retain intrinsic memory of IL-4/IL-13 exposure, and test the potential for clinical blockade of the IL-4 receptor α-subunit to modify basal and secretory cell states in vivo. Overall, we find that reduced epithelial diversity stemming from functional shifts in basal cells is a key characteristic of type 2 immune-mediated barrier tissue dysfunction. Our results demonstrate that epithelial stem cells may contribute to the persistence of human disease by serving as repositories for allergic memories. KNational Institutes of Health (U.S.) (Grant 1DP2OD020839)National Institutes of Health (U.S.) (Grant 2U19AI089992)National Institutes of Health (U.S.) (Grant 1U54CA217377)National Institutes of Health (U.S.) (Grant P01AI039671)National Institutes of Health (U.S.) (Grant 5U24AI118672)National Institutes of Health (U.S.) (Grant 2RM1HG006193)National Institutes of Health (U.S.) (Grant 1R33CA202820)National Institutes of Health (U.S.) (Grant 2R01HL095791)National Institutes of Health (U.S.) (Grant 1R01AI138546)National Institutes of Health (U.S.) (Grant 1R01HL126554)National Institutes of Health (U.S.) (Grant 1R01DA046277)National Institutes of Health (U.S.) (Grant 2R01HL095791)Bill & Melinda Gates Foundation (Grant OPP1139972)Bill & Melinda Gates Foundation (Grant OPP1116944)National Institutes of Health (U.S.) (Grant 2R01GM081871–09 )National Cancer Institute (U.S.) (Grant P30-CA14051)National Institutes of Health (U.S.). Center for AIDS Research (Award P30 AI060354
    corecore