10 research outputs found

    Borrelia burgdorferi Requires the Alternative Sigma Factor RpoS for Dissemination within the Vector during Tick-to-Mammal Transmission

    Get PDF
    While the roles of rpoSBb and RpoS-dependent genes have been studied extensively within the mammal, the contribution of the RpoS regulon to the tick-phase of the Borrelia burgdorferi enzootic cycle has not been examined. Herein, we demonstrate that RpoS-dependent gene expression is prerequisite for the transmission of spirochetes by feeding nymphs. RpoS-deficient organisms are confined to the midgut lumen where they transform into an unusual morphotype (round bodies) during the later stages of the blood meal. We show that round body formation is rapidly reversible, and in vitro appears to be attributable, in part, to reduced levels of Coenzyme A disulfide reductase, which among other functions, provides NAD+ for glycolysis. Our data suggest that spirochetes default to an RpoS-independent program for round body formation upon sensing that the energetics for transmission are unfavorable

    Activation of Human Monocytes by Live Borrelia burgdorferi Generates TLR2-Dependent and -Independent Responses Which Include Induction of IFN-β

    Get PDF
    It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-β and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-α, IL-6, IL-10 and IL-1β in monocytes than did lysates. Secreted IL-18, which, like IL-1β, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-β and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs

    Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-β

    Get PDF
    Phagocytosed Borrelia burgdorferi (Bb) induces inflammatory signals that differ both quantitatively and qualitatively from those generated by spirochetal lipoproteins interacting with Toll-like receptor (TLR) 1/2 on the surface of human monocytes. Of particular significance, and in contrast to lipoproteins, internalized spirochetes induce transcription of IFN-β. Using inhibitory immunoregulatory DNA sequences (IRSs) specific to TLR7, TLR8, and TLR9, we show that the TLR8 inhibitor IRS957 significantly diminishes production of TNF-α, IL-6, and IL-10 and completely abrogates transcription of IFN-β in Bb-stimulated monocytes. We demonstrate that live Bb induces transcription of TLR2 and TLR8, whereas IRS957 interferes with their transcriptional regulation. Using confocal and epifluorescence microscopy, we show that baseline TLR expression in unstimulated monocytes is greater for TLR2 than for TLR8, whereas expression of both TLRs increases significantly upon stimulation with live spirochetes. By confocal microscopy, we show that TLR2 colocalization with Bb coincides with binding, uptake, and formation of the phagosomal vacuole, whereas recruitment of both TLR2 and TLR8 overlaps with degradation of the spirochete. We provide evidence that IFN regulatory factor (IRF) 7 is translocated into the nucleus of Bb-infected monocytes, suggesting its activation through phosphorylation. Taken together, these findings indicate that the phagosome is an efficient platform for the recognition of diverse ligands; in the case of Bb, phagosomal signaling involves a cooperative interaction between TLR2 and TLR8 in pro- and antiinflammatory cytokine responses, whereas TLR8 is solely responsible for IRF7-mediated induction of IFN-β

    Lyme disease: A rigorous review of diagnostic criteria and treatment

    No full text
    corecore