754 research outputs found

    Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53

    Get PDF
    Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets. Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region. Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes

    Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    Get PDF
    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 ??C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.clos

    Evaluation of the effects of a hydrogen sulfide donor on neural plasticity.

    Get PDF
    The aging brain can exhibit significant modifications related with a progressive atrophy. Previous studies have shown that this atrophy may result from a combination of dendritic regression and neuronal death (1). Age-related memory and cognitive decline have been shown to coincide frequently with morphological changes which affect the neural plasticity and number of dendritic spines in the brains of both humans and animals (2). Furthermore, many neuropathologic conditions and neurodegenerative diseases exhibit abnormalities in dendritic tree structure. Animal studies have shown that even mild prolonged stress has been observed to induce the shrinkage of dendritic fields and the loss of dendritic spines (3).Recent evidence suggest that H2S is a gasotransmitter with neuroprotective properties. In addition, a few sulfur donors have shown beneficial therapeutic effects in experimental models of neurodegenerative diseases (4). Moreover, previous research in our lab suggests that a pharmacological treatment aimed at increasing intracellular H2S improves physical and metabolic health in mice. Nonetheless, the specific properties of these compounds maintaining neuron homeostasis and plasticity remain unknown.Here we aim to investigate whether modulation of intracellular H2S by a pharmacological intervention can improve neuronal plasticity in terms of morphological changes at the level of dendritic arborization and dendritic spine density. To this purpose, we will perform analyses in murine primary neuron cultures that will be treated with increasing concentrations of drug “δ”. Experimental conditions will be: untreated (0, vehicle solution), 10 μM, 50 μM, and 100 μM. Cells will be maintained for 12-14 days in culture, and will be treated with compound “δ” for 48 hours. Then cells will be fixed and MAP2 immunocytochemistry analyses will be performed. Photos will be taken under a fluorescence microscope and analyzed using software ImageJ to determine the percentage of arborized area and the dendritic spine density. The results will provide us with an insight into the potential of drug “δ” as a neuroprotective agent to prevent age-related loss of neuroplasticity

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Molecular processes underlying the floral transition in the soybean shoot apical meristem

    Get PDF
    The transition to flowering is characterized by a shift of the shoot apical meristem (SAM) from leaf production to the initiation of a floral meristem. The flowering process is of vital importance for agriculture, but the associated events or regulatory pathways in the SAM are not well understood, especially at a system level. To address this issue, we have used a GeneChip® containing 37 744 probe sets to generate a temporal profile of gene expression during the floral initiation process in the SAM of the crop legume, soybean (Glycine max). A total of 331 transcripts displayed significant changes in their expression profiles. The in silico and RT-PCR analysis on differentially regulated transcripts implies the intriguing involvement of sugar, auxin or abscisic acid (ABA) in events prior to the induction of floral homeotic transcripts. The novel involvement of ABA in the floral transition is further implicated by immunoassay, suggesting an increase in ABA levels in the SAM during this developmental transition. Furthermore, in situ localization, together with in silico data demonstrating a marked enhancement of abiotic stress-related transcripts, such as trehalose metabolism genes in SAMs, points to an overlap of abiotic stress and floral signalling pathways

    Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse

    Get PDF
    [EN] Long shelf-life tomato (Solanum lycopersicum) landraces, characterized by carrying the alc allele in the NOR. NAC locus, have been traditionally cultivated in the Mediterranean region. These materials are adapted to open field conditions under low input conditions. However, cultivation under greenhouse is expanding fueled by increasing demand of these traditional tomatoes. We hypothesize that the large diversity in the long shelf-life landraces and derived materials can be exploited for adaptation to these new cultivation conditions. We have evaluated 12 varieties (seven landraces, three selections and two hybrids) carrying the alc mutation under open field (OF) and greenhouse (GH) cultivation, and evaluated them for 52 morphological, agronomic, chemical properties, and chemical composition descriptors. All descriptors, except six morphological ones, were variable. The variety effect was the greatest contributor to variation for most morphological traits, as well as for fruit weight, fruit shape, dry matter, and soluble solids content. However, significant environmental and genotype x environment interaction were found for 36 and 42 descriptors, respectively. Fruits from GH plants had lower weight and firmness and were less red than those from OF. On average, in GH yield was 35% lower and daily fruit weight loss in post-harvest 41% higher than in OF. However, fruits from GH had on average higher dry matter and soluble solids contents, antioxidant activity, glucose, fructose, and ascorbic acid concentrations, but lower contents in lycopene and beta-carotene than those from OF. A principal components analysis clearly separated varieties according to the cultivation environment. However, the distribution pattern of varieties within each of the two clusters (GH and OF) was similar, despite the strong G x E interaction for many descriptors. Landraces from the same origin plotted in the same area of each cluster, and selections and hybrids plotted together with the landraces. The results reveal a high impact of the cultivation environment on morphological, agronomic, chemical properties, and chemical composition of Mediterranean long shelf-life traditional tomato varieties. This suggests that breeding programs specifically focused to adaptation to greenhouse conditions should be developed.This work was supported by Associacio de Productors i Comercialitzadors de la Tomata de Penjar d'Alcala de Xivert. Funding was also received from the TRADITOM (Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population), G2P-SOL (Linking genetic resources, genomes, and phenotypes of Solanaceous crops) and BRESOV (Breeding for resilient, efficient, and sustainable organic vegetable production) projects. TRADITOM, G2P-SOL, and BRESOV projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 634561 (TRADITOM), 677379 (G2PSOL), and 774244 (BRESOV). ER is grateful to the Spanish Ministerio de Economia, Industria y Competitividad for a pre-doctoral grant (BES-2016-077482). MP is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva programme (FCJI-2015-24835) and to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral contract (APOSTD/2018/014).Figás-Moreno, MDR.; Prohens Tomás, J.; Raigón Jiménez, MD.; Pereira-Días, L.; Casanova-Calancha, C.; García-Martínez, MD.; Rosa-Martínez, E.... (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.01774S9Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-xAdams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524Ballester, A.-R., Molthoff, J., de Vos, R., Hekkert, B. te L., Orzaez, D., Fernández-Moreno, J.-P., … Bovy, A. (2009). Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color. Plant Physiology, 152(1), 71-84. doi:10.1104/pp.109.147322Barrett, D. M., Beaulieu, J. C., & Shewfelt, R. (2010). Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Critical Reviews in Food Science and Nutrition, 50(5), 369-389. doi:10.1080/10408391003626322Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. doi:10.1016/j.postharvbio.2011.05.016Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3Cano, A., Acosta, M., & Arnao, M. B. (2003). Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 28(1), 59-65. doi:10.1016/s0925-5214(02)00141-2Missio, J. C., Renau, R. M., Artigas, F. C., & Cornejo, J. C. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola, 72(4), 314-321. doi:10.1590/0103-9016-2014-0311Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044Conesa, M. À., Galmés, J., Ochogavía, J. M., March, J., Jaume, J., Martorell, A., … Cifre, J. (2014). The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 93, 114-121. doi:10.1016/j.postharvbio.2014.02.014Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322Csizinszky, A. A. (s. f.). Production in the open field. Tomatoes, 237-256. doi:10.1079/9780851993966.0237Diamanti, J., Battino, M., & Mezzetti, B. (2011). Breeding for Fruit Nutritional and Nutraceutical Quality. Breeding for Fruit Quality, 61-79. doi:10.1002/9780470959350.ch3Dumas, Y., Leoni, C., Portas, C. A. M., & Bièche, B. (1994). INFLUENCE OF WATER AND NITROGEN AVAILABILITY ON YIELD AND QUALITY OF PROCESSING TOMATO IN THE EUROPEAN UNION COUNTRIES. Acta Horticulturae, (376), 185-192. doi:10.17660/actahortic.1994.376.23El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. doi:10.1016/j.scienta.2014.01.010FAIRCHILD, D. (1927). THE TOMATO TERRACES OF BAÑALBUFAR. Journal of Heredity, 18(6), 245-251. doi:10.1093/oxfordjournals.jhered.a102861Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122(4), 562-571. doi:10.1016/j.scienta.2009.06.026Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2014). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool Tomato Analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. doi:10.1007/s10722-014-0142-1Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., … Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. doi:10.1016/j.foodchem.2015.04.083Fullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., & Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. doi:10.1016/j.scienta.2018.01.045Galiana-Balaguer, L., Roselló, S., & Nuez, F. (2006). Characterization and Selection of Balanced Sources of Variability for Breeding Tomato (Lycopersicon) Internal Quality. Genetic Resources and Crop Evolution, 53(5), 907-923. doi:10.1007/s10722-004-6696-6Hounsome, N., Hounsome, B., Tomos, D., & Edwards-Jones, G. (2008). Plant Metabolites and Nutritional Quality of Vegetables. Journal of Food Science, 73(4), R48-R65. doi:10.1111/j.1750-3841.2008.00716.xJavanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41(2), 151-155. doi:10.1016/j.postharvbio.2006.03.008Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463-469. doi:10.1016/j.scienta.2017.09.046Maamar, B., Maatoug, M., Iriti, M., Dellal, A., & Ait hammou Mohammed. (2015). Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. Environmental Science and Pollution Research, 22(16), 12124-12132. doi:10.1007/s11356-015-4490-yMercati, F., Longo, C., Poma, D., Araniti, F., Lupini, A., Mammano, M. M., … Sunseri, F. (2014). Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genetic Resources and Crop Evolution, 62(5), 721-732. doi:10.1007/s10722-014-0191-5Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato Fruit Quality and Shelf Life in Hybrids Heterozygous for the alc Ripening Mutant. HortScience, 27(4), 352-355. doi:10.21273/hortsci.27.4.352Ortiz, R., Crossa, J., Vargas, M., & Izquierdo, J. (2006). Studying the effect of environmental variables on the genotype × environment interaction of tomato. Euphytica, 153(1-2), 119-134. doi:10.1007/s10681-006-9248-7Pagno, C. H., Castagna, A., Trivellini, A., Mensuali-Sodi, A., Ranieri, A., Ferreira, E. A., … Flôres, S. H. (2017). The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 42(1), e13326. doi:10.1111/jfpp.13326Panthee, D. R., Labate, J. A., McGrath, M. T., Breksa, A. P., & Robertson, L. D. (2013). Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica, 193(2), 169-182. doi:10.1007/s10681-013-0895-1Pascual, B., Maroto, J. V., Sanbautista, A., López-Galarza, S., & Alagarda, J. (2000). Influence of watering on the yield and cracking of cherry, fresh-market and processing tomatoes. The Journal of Horticultural Science and Biotechnology, 75(2), 171-175. doi:10.1080/14620316.2000.11511218Peet, M. M., & Welles, G. (s. f.). Greenhouse tomato production. Tomatoes, 257-304. doi:10.1079/9780851993966.0257Rick, C. M. (1967). Fruit and pedicel characters derived from Galápagos Tomatoes’. Economic Botany, 21(2), 171-184. doi:10.1007/bf02897867RodrÍGuez-Burruezo, S., Prohens, J., RosellÓ, J., & Nuez, F. (2005). «Heirloom» varieties as sources of variation for the improvement of fruit quality in greenhouse-grown tomatoes. The Journal of Horticultural Science and Biotechnology, 80(4), 453-460. doi:10.1080/14620316.2005.11511959Romero del Castillo, R., Puig-Pey, M., Biarnés, J., Vilaseca, H., Simó, J., Plans, M., … Casañas, F. (2014). Using Trendsetting Chefs to Design New Culinary Preparations with the «Penjar» Tomato. Journal of Culinary Science & Technology, 12(3), 196-214. doi:10.1080/15428052.2014.880099Roselló, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91(6), 1014-1021. doi:10.1002/jsfa.4276Sánchez-González, M. J., Sánchez-Guerrero, M. C., Medrano, E., Porras, M. E., Baeza, E. J., & Lorenzo, P. (2015). Influence of pre-harvest factors on quality of a winter cycle, high commercial value, tomato cultivar. Scientia Horticulturae, 189, 104-111. doi:10.1016/j.scienta.2015.03.044Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2005). Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86(2), 171-179. doi:10.1002/jsfa.2321Scott, J., Myers, J., Boches, P., Nichols, C., & Angell, F. (2013). Classical Genetics and Traditional Breeding. Genetics, Genomics, and Breeding of Tomato, 37-73. doi:10.1201/b14578-3Tranchida-Lombardo, V., Aiese Cigliano, R., Anzar, I., Landi, S., Palombieri, S., Colantuono, C., … Grillo, S. (2017). Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 25(2), 149-160. doi:10.1093/dnares/dsx045Yamaguchi, M. (1983). Solanaceous Fruits: Tomato, Eggplant, Peppers, and Others. World Vegetables, 291-311. doi:10.1007/978-94-011-7907-2_22Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.07

    New resources for functional analysis of omics data for the genus Aspergillus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus <it>Aspergillus </it>comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely <it>A. nidulans</it>.</p> <p>Results</p> <p>Based on protein homology, we mapped 97% of the 3,498 GO annotated <it>A. nidulans </it>genes to at least one of seven other <it>Aspergillus </it>species: <it>A. niger</it>, <it>A. fumigatus</it>, <it>A. flavus</it>, <it>A. clavatus</it>, <it>A. terreus</it>, <it>A. oryzae </it>and <it>Neosartorya fischeri</it>. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all <it>Aspergillus </it>species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (<url>http://www.broadinstitute.org/fetgoat/index.html</url>). To demonstrate the value of those new resources for functional analysis of omics data for the genus <it>Aspergillus</it>, we performed two case studies analyzing microarray data recently published for <it>A. nidulans</it>, <it>A. niger </it>and <it>A. oryzae</it>.</p> <p>Conclusions</p> <p>We mapped <it>A. nidulans </it>GO annotation to seven other <it>Aspergilli</it>. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus <it>Aspergillus</it>. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.</p

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Identifying Schistosoma japonicum Excretory/Secretory Proteins and Their Interactions with Host Immune System

    Get PDF
    Schistosoma japonicum is a major infectious agent of schistosomiasis. It has been reported that large number of proteins excreted and secreted by S. japonicum during its life cycle are important for its infection and survival in definitive hosts. These proteins can be used as ideal candidates for vaccines or drug targets. In this work, we analyzed the protein sequences of S. japonicum and found that compared with other proteins in S. japonicum, excretory/secretory (ES) proteins are generally longer, more likely to be stable and enzyme, more likely to contain immune-related binding peptides and more likely to be involved in regulation and metabolism processes. Based on the sequence difference between ES and non-ES proteins, we trained a support vector machine (SVM) with much higher accuracy than existing approaches. Using this SVM, we identified 191 new ES proteins in S. japonicum, and further predicted 7 potential interactions between these ES proteins and human immune proteins. Our results are useful to understand the pathogenesis of schistosomiasis and can serve as a new resource for vaccine or drug targets discovery for anti-schistosome
    corecore