194 research outputs found

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (AugĂŠ, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; GĂśhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and VosĂĄtka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginger is one of the most important spice crops and traditionally has been used as medicinal plant in Bangladesh. The present work is aimed to find out antioxidant and anticancer activities of two Bangladeshi ginger varieties (Fulbaria and Syedpuri) at young age grown under ambient (400 μmol/mol) and elevated (800 μmol/mol) CO<sub>2 </sub>concentrations against two human breast cancer cell lines (MCF-7 and MDA-MB-231).</p> <p>Methods</p> <p>The effects of ginger on MCF-7 and MDA-MB-231 cell lines were determined using TBA (thiobarbituric acid) and MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide] assays. Reversed-phase HPLC was used to assay flavonoids composition among Fulbaria and Syedpuri ginger varieties grown under increasing CO<sub>2 </sub>concentration from 400 to 800 μmol/mol.</p> <p>Results</p> <p>Antioxidant activities in both varieties found increased significantly (P ≤ 0.05) with increasing CO<sub>2 </sub>concentration from 400 to 800 μmol/mol. High antioxidant activities were observed in the rhizomes of Syedpuri grown under elevated CO<sub>2 </sub>concentration. The results showed that enriched ginger extract (rhizomes) exhibited the highest anticancer activity on MCF-7 cancer cells with IC<sub>50 </sub>values of 34.8 and 25.7 μg/ml for Fulbaria and Syedpuri respectively. IC<sub>50 </sub>values for MDA-MB-231 exhibition were 32.53 and 30.20 μg/ml for rhizomes extract of Fulbaria and Syedpuri accordingly.</p> <p>Conclusions</p> <p>Fulbaria and Syedpuri possess antioxidant and anticancer properties especially when grown under elevated CO<sub>2 </sub>concentration. The use of ginger grown under elevated CO<sub>2 </sub>concentration may have potential in the treatment and prevention of cancer.</p

    A Comparative Approach Linking Molecular Dynamics of Altered Peptide Ligands and MHC with In Vivo Immune Responses

    Get PDF
    The recognition of peptide in the context of MHC by T lymphocytes is a critical step in the initiation of an adaptive immune response. However, the molecular nature of the interaction between peptide and MHC and how it influences T cell responsiveness is not fully understood.We analyzed the immunological consequences of the interaction of MHC class II (I-Au) restricted 11-mer peptides of myelin basic protein with amino acid substitutions at position 4. These mutant peptides differ in MHC binding affinity, CD4+ T cell priming, and alter the severity of peptide-induced experimental allergic encephalomyelitis. Using molecular dynamics, a computational method of quantifying intrinsic movements of proteins at high resolution, we investigated conformational changes in MHC upon peptide binding. We found that irrespective of peptide binding affinity, MHC deformation appears to influence costimulation, which then leads to effective T cell priming and disease induction. Although this study compares in vivo and molecular dynamics results for three altered peptide ligands, further investigation with similar complexes is essential to determine whether spatial rearrangement of peptide-MHC and costimulatory complexes is an additional level of T cell regulation

    CNS Expression of B7-H1 Regulates Pro-Inflammatory Cytokine Production and Alters Severity of Theiler's Virus-Induced Demyelinating Disease

    Get PDF
    The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4+ T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b+CD11c−CD45HIGH monocytes/macrophages and CD11b+CD11c+CD45HIGH dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4+ and CD8+ T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD

    Combined Boyden-Flow Cytometry Assay Improves Quantification and Provides Phenotypification of Leukocyte Chemotaxis

    Get PDF
    Chemotaxis has been studied by classical methods that measure chemotactic and random motility responses in vitro, but these methods do not evaluate the total number and phenotype of migrating leukocytes simultaneously. Our objective was to develop and validate a novel assay, combined Boyden-flow cytometry chemotaxis assay (CBFCA), for simultaneous quantification and phenotypification of migrating leukocytes. CBFCA exhibited several important advantages in comparison to the classic Boyden chemotaxis assay (CBCA): 1) improved precision (intra-assay coefficients of variation (CVs): CBFCA-4.7 and 4.8% vs. CBCA-30.1 and 17.3%; inter-observer CVs: CBFCA-3.6% vs. CBCA 30.1%); 2) increased recovery of cells, which increased assay to provide increased sensitivity; 3) high specificity for determining the phenotype of migrating/attracted leukocytes; and 4) reduced performance time (CBFCA 120 min vs. CBCA 265 min). Other advantages of CBFCA are: 5) robustness, 6) linearity, 7) eliminated requirement for albumin and, importantly, 8) enabled recovery of migrating leukocytes for subsequent studies. This latter feature is of great benefit in the study of migrating leukocyte subsets. We conclude that the CBFCA is a novel and improved technique for experiments focused on understanding leukocyte trafficking during the inflammatory response

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Assimilation of alternative sulfur sources in fungi

    Get PDF
    Fungi are well known for their metabolic versatility, whether it is the degradation of complex organic substrates or the biosynthesis of intricate secondary metabolites. The vast majority of studies concerning fungal metabolic pathways for sulfur assimilation have focused on conventional sources of sulfur such as inorganic sulfur ions and sulfur-containing biomolecules. Less is known about the metabolic pathways involved in the assimilation of so-called “alternative” sulfur sources such as sulfides, sulfoxides, sulfones, sulfonates, sulfate esters and sulfamates. This review summarizes our current knowledge regarding the structural diversity of sulfur compounds assimilated by fungi as well as the biochemistry and genetics of metabolic pathways involved in this process. Shared sequence homology between bacterial and fungal sulfur assimilation genes have lead to the identification of several candidate genes in fungi while other enzyme activities and pathways so far appear to be specific to the fungal kingdom. Increased knowledge of how fungi catabolize this group of compounds will ultimately contribute to a more complete understanding of sulfur cycling in nature as well as the environmental fate of sulfur-containing xenobiotics
    • …
    corecore