76 research outputs found

    Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages

    Get PDF
    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs

    Eye Tracking-based Evaluation of User Engagement with Standard and Personalised Digital Education for Diabetic Patients

    Get PDF

    The apobec mutational activity in multiple myeloma: from diagnosis to cell lines

    Get PDF
    Next generation sequencing (NGS) studies have highlighted the role of aberrant activity of APOBEC DNA deaminases in generating the mu- tational repertoire of multiple myeloma (MM). However, the contribu- tion of this mutational process across the landscape of plasma cell dyscrasias, or its prognostic role, has never been investigated in detail. To answer these unexplored aspects of MM biology, we used published NGS data from our own work as well as others, including the large CoMMpass trial for a total of 1153 whole-exomes of MM. Furthermore, we investigated 5 MGUS, 6 primary plasma cell leukemias (pPCL) and 18 MM cell lines (MMCL). Overall, we identified signatures of two mu- tational processes, one related to spontaneous deamination of methy- lated cytosines (30% of variants, range 0-100%) and one attributed to aberrant APOBEC activity (70% of variants, range 0-100%). APOBEC contribution was extremely heterogeneous among MM patients, but was correlated with a higher mutational burden (r=0.71, p=<0.0001) and with MAF gene translocations t(14;16) and t(14;20). The activity of APOBEC increased from MGUS to MM to pPCL, both in terms of ab- solute number of mutations and as percentage contribution. In MMCL we instead observed a bi-modal distribution whereby 8 cell lines showed the highest numbers of mutations caused by APOBEC (5/8 car- ried MAF translocations), while 10 where virtually devoid of APOBEC mutations (0/10 carried MAF translocations). The contribution of APOBEC to the total mutational repertoire in MM had a clear prognos- tic impact. MM patients with APOBEC mutations in the lowest quartile had a survival advantage over patients with APOBEC mutations in the highest quartile both in terms of progression-free survival (3-y PFS 46% vs 67% months, p=<0.0001) and overall survival (3-y OS 52% vs 83%, p=0.0084). This association was retained in a multivariate model that included age, gender, cytogenetic class, ISS, and quartiles of mutational load both in PFS [p=0.02, HR 2.06 (95IC 1.11-3.81] and OS [p=0.02, HR 2.88 (95IC 1.17-7.09)]. Interestingly we found that APOBEC mutations in the 4th quartile retained its independent prognostic respect to high mutational load and presence of MAF translocations. Overall, our data suggest that APOBEC-mediated mutagenesis is strongly involved in MM pathogenesis and its activity persists during different phases of evolution, playing a critical role in MM genomic complexity, and im- pacting prognosis of the patients

    From arylamine N-acetyltransferase to folate-dependent acetyl CoA hydrolase : impact of folic acid on the activity of (HUMAN)NAT1 and its homologue (MOUSE)NAT2

    Get PDF
    Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme's active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of these enzymes and for improving chemotherapeutic approaches to pathological conditions including estrogen receptor-positive breast cancer

    Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells

    Get PDF
    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.This work was supported by the Wellcome Trust. Y.S.J is supported by a European Molecular Biology Organization long-term fellowship (LTF 1203_2012). J.M.C.T. is supported by Marie Curie Fellowship FP7 PEOPLE-2012-IEF (project number 328264). P.J.C. is a Wellcome Trust Senior Clinical Fellow. Support was provided to A.M.F. by the National Institute for Health Research (NIHR) UCLH Biomedical Research Centre. The ICGC Breast Cancer Consortium was supported by a grant from the European Union (BASIS) and the Wellcome Trust. The ICGC Prostate Cancer Consortium was funded by Cancer Research UK with a grant from the Dallaglio Foundation (grant number C5047/A14835). R.E. is supported by National Institute for Health Research support to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden NHS Foundation Trust. We also thank the National Cancer Research Prostate Cancer Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. The authors also acknowledge financial support from the Department of Health via the National Institute for Health Research comprehensive Biomedical Research Centre award to Guy’s and St. Thomas’ NHS Foundation Trust and Breakthrough Breast Cancer Research (ICGC 08/09 and KCL) (A.T.)

    Cognitive decline in Huntington's disease expansion gene carriers

    Get PDF
    BACKGROUND: In Huntington's Disease (HD) cognitive decline can occur before unequivocal motor signs become apparent. As cognitive decline often starts early in the course of the disease and has a progressive nature over time, cognition can be regarded as a key target for symptomatic treatment. The specific progressive profile of cognitive decline over time is unknown. OBJECTIVE: The aim of this study is to quantify the progression of cognitive decline across all HD stages, from pre-motormanifest to advanced HD, and to investigate if CAG length mediates cognitive decline. METHODS: In the European REGISTRY study 2669 HD expansion gene carriers underwent annual cognitive assessment. General linear mixed models were used to model the cognitive decline for each cognitive task across all disease stages. Additionally, a model was developed to evaluate the cognitive decline based on CAG length and age rather than disease stage. RESULTS: There was significant cognitive decline on all administered tasks throughout pre-motormanifest (close to estimated disease onset) participants and the subsequent motormanifest participants from stage 1 to stage 4. Performance on the Stroop Word and Stroop Color tests additionally declined significantly across the two pre-motormanifest groups: far and close to estimated disease onset. The evaluation of cognition performance in relation to CAG length and age revealed a more rapid cognitive decline in participants with longer CAG length than participants with shorter CAG length over time. CONCLUSION: Cognitive performance already shows decline in pre-motormanifest HD gene expansion carriers and gradually worsens to late stage HD. HD gene expansion carriers with certain CAG length have their own cognitive profile, i.e., longer CAG length is associated with more rapid decline

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Probing of the Voltammetric Features of Graphite Electrodes Modified with Mercaptoundecanoic Acid Stabilized Gold Nanoparticles

    Get PDF
    In this work we report on the remarkable voltammetric features of graphite electrodes, which were modified with mercaptoundecanoic acid derivatized gold nanoparticles (Au-MUA NPs) by simple adsorption from basic aqueous solution. Atomic force microscopy measurements proved a fairly uniform adsorption of the nanoparticles in the form of clusters, and consecutive island formation. The electrochemical features of the modified electrodes were probed by cyclic voltammetry, while using various redox probes in several different setups. The catalytic effects of the adsorbed clusters on the graphite electrodes proved to be highly reproducible, time dependent, and of nonselective nature. The main advantages of the proposed methodology are seen by the simplicity of the modification procedure, the stability of the self-assembled gold nanoparticle film, their applicability in various voltammetric scenarios, and the potential employment of the Au-MUA NP modified electrodes as sensors for various systems

    Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars

    No full text
    New anti-tubercular drugs and drug targets are urgently needed to reduce the time for treatment and also to identify agents that will be effective against Mycobacterium tuberculosis persisting intracellularly. Mycobacteria have a unique cell wall. Deletion of the gene for arylamine N-acetyltransferase (NAT) decreases mycobacterial cell wall lipids, particularly the distinctive mycolates, and also increases antibiotic susceptibility and killing within macrophage of Mycobacterium bovis BCG. The nat gene and its associated gene cluster are almost identical in sequence in M. bovis BCG and M. tuberculosis. The gene cluster is essential for intracellular survival of mycobacteria. We have therefore used pure NAT protein for high-throughput screening to identify several classes of small molecules that inhibit NAT activity. Here, we characterize one class of such molecules—triazoles—in relation to its effects on the target enzyme and on both M. bovis BCG and M. tuberculosis. The most potent triazole mimics the effects of deletion of the nat gene on growth, lipid disruption and intracellular survival. We also present the structure-activity relationship between NAT inhibition and effects on mycobacterial growth, and use ligand-protein analysis to give further insight into the structure-activity relationships. We conclude that screening a chemical library with NAT protein yields compounds that have high potential as anti-tubercular agents and that the inhibitors will allow further exploration of the biochemical pathway in which NAT is involved
    corecore