72 research outputs found

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    The Prometastatic Microenvironment of the Liver

    Get PDF
    The liver is a major metastasis-susceptible site and majority of patients with hepatic metastasis die from the disease in the absence of efficient treatments. The intrahepatic circulation and microvascular arrest of cancer cells trigger a local inflammatory reaction leading to cancer cell apoptosis and cytotoxicity via oxidative stress mediators (mainly nitric oxide and hydrogen peroxide) and hepatic natural killer cells. However, certain cancer cells that resist or even deactivate these anti-tumoral defense mechanisms still can adhere to endothelial cells of the hepatic microvasculature through proinflammatory cytokine-mediated mechanisms. During their temporary residence, some of these cancer cells ignore growth-inhibitory factors while respond to proliferation-stimulating factors released from tumor-activated hepatocytes and sinusoidal cells. This leads to avascular micrometastasis generation in periportal areas of hepatic lobules. Hepatocytes and myofibroblasts derived from portal tracts and activated hepatic stellate cells are next recruited into some of these avascular micrometastases. These create a private microenvironment that supports their development through the specific release of both proangiogenic factors and cancer cell invasion- and proliferation-stimulating factors. Moreover, both soluble factors from tumor-activated hepatocytes and myofibroblasts also contribute to the regulation of metastatic cancer cell genes. Therefore, the liver offers a prometastatic microenvironment to circulating cancer cells that supports metastasis development. The ability to resist anti-tumor hepatic defense and to take advantage of hepatic cell-derived factors are key phenotypic properties of liver-metastasizing cancer cells. Knowledge on hepatic metastasis regulation by microenvironment opens multiple opportunities for metastasis inhibition at both subclinical and advanced stages. In addition, together with metastasis-related gene profiles revealing the existence of liver metastasis potential in primary tumors, new biomarkers on the prometastatic microenvironment of the liver may be helpful for the individual assessment of hepatic metastasis risk in cancer patients

    Circulating insulin-like growth factor axis and the risk of pancreatic cancer in four prospective cohorts

    Get PDF
    Insulin-like growth factor (IGF)-I induces growth in pancreatic cancer cells and blockade of the IGF-I receptor has antitumour activity. The association of plasma IGF-I and IGF binding protein-3 (IGFBP-3) with pancreatic cancer risk has been investigated in two small studies, with conflicting results. We conducted a nested case–control study within four large, prospective cohorts to investigate whether prediagnostic plasma levels of IGF-I, IGF-II, and IGFBP-3 were associated with pancreatic cancer risk. Plasma levels in 212 cases and 635 matched controls were compared by conditional logistic regression, with adjustment for other known pancreatic cancer risk factors. No association was observed between plasma levels of IGF-I, IGF-II, or IGFBP-3 and incident diagnosis of pancreatic cancer. Relative risks for the highest vs the lowest quartile of IGF-I, IGF-II, and IGFBP-3 were 0.94 (95% confidence interval (CI), 0.60–1.48), 0.96 (95% CI, 0.61–1.52), and 1.21 (95% CI, 0.75–1.92), respectively. The relative risk for the molar ratio of IGF-I and IGFBP-3, a surrogate measure for free IGF-I, was 0.84 (95% CI, 0.54–1.31). Additionally, no association was noted in stratified analyses or when requiring longer follow-up. In four prospective cohorts, we found no association between the risk of pancreatic cancer and prediagnostic plasma levels of IGF-I, IGF-II, or IGFBP-3

    Genetic Polymorphism in a VEGF-Independent Angiogenesis Gene ANGPT1 and Overall Survival of Colorectal Cancer Patients after Surgical Resection

    Get PDF
    Background The VEGF-independent angiogenic signaling plays an important role in the development of colorectal cancer (CRC). However, its implication in the clinical outcome of CRC has not been reported. This study aimed to investigate the association between genetic variations in several major VEGF-independent signaling pathway genes and the overall survival of CRC patients. Methods Seven single nucleotide polymorphisms (SNPs) in four important VEGF-independent angiogenic genes (ANGPT1, AMOT, DLL4 and ENG) were genotyped in a Chinese population with 408 CRC patients. Results One SNP, rs1954727 in ANGPT1, was significantly associated with CRC overall survival. Compared to patients with the homozygous wild-type genotype of rs1954727, those with heterozygous and homozygous variant genotypes exhibited a favorable overall survival with a hazard ratio (HR) of 0.89 (95% confidence interval [CI] 0.55–1.43, P = 0.623), and 0.32 (95% CI 0.15–0.71, P = 0.005), respectively (P trend = 0.008). In stratified analysis, this association remained significant in patients receiving chemotherapy (P trend = 0.012), but not in those without chemotherapy. We further evaluated the effects of chemotherapy on CRC survival that was stratified by rs1954727 genotypes. We found that chemotherapy resulted in a significantly better overall survival in the CRC patients (HR = 0.44, 95% CI 0.26–0.75, P = 0.002), which was especially prominent in those patients with the heterozygous genotype of rs1954727 (HR = 0.45, 95%CI 0.22–0.92, P = 0.028). Conclusion Our data suggest that rs1954727 in ANGPT1 gene might be a prognostic biomarker for the overall survival of CRC patients, especially in those receiving chemotherapy, a finding that warrants validation in larger independent populations

    Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2), a beta integrin antagonist, in patients with solid tumours

    Get PDF
    To evaluate the toxicity, pharmacological and biological properties of ATN-161, a five –amino-acid peptide derived from the synergy region of fibronectin, adult patients with advanced solid tumours were enrolled in eight sequential dose cohorts (0.1–16 mg kg−1), receiving ATN-161 administered as a 10-min infusion thrice weekly. Pharmacokinetic sampling of blood and urine over 7 h was performed on Day 1. Twenty-six patients received from 1 to 14 4-week cycles of treatment. The total number of cycles administered to all patients was 86, without dose-limiting toxicities. At dose levels above 0.5 mg kg−1, mean total clearance and volume of distribution showed dose-independent pharmacokinetics (PKs). At 8.0 and 16.0 mg kg−1, clearance of ATN-161 was reduced, suggesting saturable PKs. Dose escalation was halted at 16 mg kg−1 when drug exposure (area under the curve) exceeded that associated with efficacy in animal models. There were no objective responses. Six patients received more than four cycles of treatment (>112 days). Three patients received 10 or more cycles (⩾280 days). ATN-161 was well tolerated at all dose levels. Approximately, 1/3 of the patients in the study manifested prolonged stable disease. These findings suggest that ATN-161 should be investigated further as an antiangiogenic and antimetastatic cancer agent alone or with chemotherapy

    Overexpression of neuropilin-1 promotes constitutive MAPK signalling and chemoresistance in pancreatic cancer cells

    Get PDF
    Neuropilin-1 (NRP-1) is a novel co-receptor for vascular endothelial growth factor (VEGF). Neuropilin-1 is expressed in pancreatic cancer, but not in nonmalignant pancreatic tissue. We hypothesised that NRP-1 expression by pancreatic cancer cells contributes to the malignant phenotype. To determine the role of NRP-1 in pancreatic cancer, NRP-1 was stably transfected into the human pancreatic cancer cell line FG. Signal transduction was assessed by Western blot analysis. Susceptibility to anoikis (detachment induced apoptosis) was evaluated by colony formation after growth in suspension. Chemosensitivity to gemcitabine or 5-fluorouracil (5-FU) was assessed by MTT assay in pancreatic cancer cells following NRP-1 overexpression or siRNA-induced downregulation of NRP-1. Differential expression of apoptosis-related genes was determined by gene array and further evaluated by Western blot analysis. Neuropilin-1 overexpression increased constitutive mitogen activated protein kinase (MAPK) signalling, possibly via an autocrine loop. Neuropilin-1 overexpression in FG cells enhanced anoikis resistance and increased survival of cells by >30% after exposure to clinically relevant levels of gemcitabine and 5-FU. In contrast, downregulation of NRP-1 expression in Panc-1 cells markedly increased chemosensitivity, inducing >50% more cell death at clinically relevant concentrations of gemcitabine. Neuropilin-1 overexpression also increased expression of the antiapoptotic regulator, MCL-1. Neuropilin-1 overexpression in pancreatic cancer cell lines is associated with (a) increased constitutive MAPK signalling, (b) inhibition of anoikis, and (c) chemoresistance. Targeting NRP-1 in pancreatic cancer cells may downregulate survival signalling pathways and increase sensitivity to chemotherapy

    Hypoxia-inducible factor-1α expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1)α expression was studied in the gastric carcinogenesis sequence and as a prognostic factor in surgically resected gastric and gastro-oesophageal junction tumours. Protein expression was examined using immunohistochemistry on formalin-fixed biopsies of normal mucosa (n=20), Helicobacter pylori associated gastritis (n=24), intestinal metaplasia (n=24), dysplasia (n=12) and intestinal (n=19) and diffuse (n=21) adenocarcinoma. The relationship between HIF-1α expression and prognosis was assessed in resection specimens from 177 patients with gastric and gastro-oesophageal junction adenocarcinoma. Hypoxia-inducible factor-1α expression was not observed in normal gastric mucosa but increased in density (P<0.01) and intensity (P<0.01) with progression from H. pylori-associated gastritis, intestinal metaplasia, dysplasia to adenocarcinoma. The pattern of staining in the resection specimens was focally positive in 49 (28%) and at the invasive tumour edge in 41 (23%). Invasive edge expression was associated with lymph node metastases (P=0.034), advanced TNM stage (P=0.001) and was an adverse prognostic factor for cancer-specific survival (P=0.019). In univariate analysis and in comparison with tumours not expressing HIF-1α, invasive edge staining was associated with a hazard ratio of 1.6 (95% CI 1.0−2.5) and focally positive staining a hazard ratio of 0.7 (95% CI 0.5−1.2). Hypoxia-inducible factor-1α lost prognostic significance in multivariate analysis. The results suggest HIF-1α is involved in gastric carcinogenesis and disease progression, but is only a weak prognostic factor for survival

    β1-integrins signaling and mammary tumor progression in transgenic mouse models: implications for human breast cancer

    Get PDF
    Consistent with their essential role in cell adhesion to the extracellular matrix, integrins and their associated signaling pathways have been shown to be involved in cell proliferation, migration, invasion and survival, processes required in both tumorigenesis and metastasis. β1-integrins represent the predominantly expressed integrins in mammary epithelial cells and have been proven crucial for mammary gland development and differentiation. Here we provide an overview of the studies that have used transgenic mouse models of mammary tumorigenesis to establish β1-integrin as a critical mediator of breast cancer progression and thereby as a potential therapeutic target for the development of new anticancer strategies
    corecore