115 research outputs found

    CHASE-PL Climate Projection dataset over Poland – bias adjustment of EURO-CORDEX simulations

    Get PDF
    The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Climate Projections – Gridded Daily Precipitation and Temperature dataset 5 km (CPLCP-GDPT5) consists of projected daily minimum and maximum air temperatures and precipitation totals of nine EURO-CORDEX regional climate model outputs bias corrected and downscaled to a 5 km  ×  5 km grid. Simulations of one historical period (1971–2000) and two future horizons (2021–2050 and 2071–2100) assuming two representative concentration pathways (RCP4.5 and RCP8.5) were produced. We used the quantile mapping method and corrected any systematic seasonal bias in these simulations before assessing the changes in annual and seasonal means of precipitation and temperature over Poland. Projected changes estimated from the multi-model ensemble mean showed that annual means of temperature are expected to increase steadily by 1 °C until 2021–2050 and by 2 °C until 2071–2100 assuming the RCP4.5 emission scenario. Assuming the RCP8.5 emission scenario, this can reach up to almost 4 °C by 2071–2100. Similarly to temperature, projected changes in regional annual means of precipitation are expected to increase by 6 to 10 % and by 8 to 16 % for the two future horizons and RCPs, respectively. Similarly, individual model simulations also exhibited warmer and wetter conditions on an annual scale, showing an intensification of the magnitude of the change at the end of the 21st century. The same applied for projected changes in seasonal means of temperature showing a higher winter warming rate by up to 0.5 °C compared to the other seasons. However, projected changes in seasonal means of precipitation by the individual models largely differ and are sometimes inconsistent, exhibiting spatial variations which depend on the selected season, location, future horizon, and RCP. The overall range of the 90 % confidence interval predicted by the ensemble of multi-model simulations was found to likely vary between −7 % (projected for summer assuming the RCP4.5 emission scenario) and +40 % (projected for winter assuming the RCP8.5 emission scenario) by the end of the 21st century. Finally, this high-resolution bias-corrected product can serve as a basis for climate change impact and adaptation studies for many sectors over Poland. The CPLCP-GDPT5 dataset is publicly available at http://dx.doi.org/10.4121/uuid:e940ec1a-71a0-449e-bbe3-29217f2ba31d

    Achievable rates for full-duplex massive MIMO systems with low-resolution ADCs/DACs under imperfect CSI environment

    Get PDF
    We investigate the uplink and downlink achievable rates of full-duplex (FD) massive multi-input multi-output (MIMO) systems with low-resolution analog-digital converters/digital-to-analog converters (ADCs/DACs), where maximum ratio combining/maximum ratio transmission (MRC/MRT) processing are adopted and imperfect channel state information (CSI) is assumed. In this paper, the quantization noise is encapsulated as an additive quantization noise model (AQNM). Then, employing the minimum mean-square error (MMSE) channel estimator, approximate expressions of the uplink and downlink achievable rates are derived, based on the analysis of the quantization error, loop interference (LI), and the inter-user interference (IUI). It is shown that the interference and noise can be eliminated by applying power scaling law properly and increasing the number of antennas. Moreover, given the number of antennas, it is found that the uplink and downlink approximate achievable rates will converge to a constant when the number of quantization bit tends to infinity. Therefore, the system performance that can be improved by increasing ADC/DAC resolution is limited, implying that it is reasonable to adopt low-resolution ADCs/DACs in FD massive MIMO systems

    Global sensitivity analysis of stochastic computer models with joint metamodels

    Get PDF
    The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of input variables gives always the same output value. This paper proposes a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random. The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, nonparametric joint models are discussed and a new Gaussian process-based joint model is proposed. The relevance of these models is analyzed based upon two case studies. Results show that the joint modeling approach yields accurate sensitivity index estimatiors even when heteroscedasticity is strong

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability

    Get PDF
    © 2019 Elsevier Ltd. All rights reserved.The main aim of this review article was to address the performance of filament wound fibre reinforced polymer (FRP) composite pipes and their critical properties, such as burst, buckling, durability and corrosion. The importance of process parameters concerning merits and demerits of the manufacturing methods was discussed for the better-quality performance. Burst analysis revealed that the winding angle of ±55° was observed to be optimum with minimum failure mechanisms, such as matrix cracking, whitening, leakage and fracture. The reduction of buckling effect was reported in case of lower hoop stress value in the hoop to axial stress ratio against axial, compression and torsion. A significant improvement in energy absorption was observed in the hybrid composite pipes with the effect of thermal treatment. However, the varying winding angle in FRP pipe fabrication was reported as an influencing factor affecting all the aforementioned properties. Almost 90% of the reviewed studies was done using E-glass/epoxy materials for the composite pipe production. By overcoming associated limitations, such as replacing synthetic materials, designing new material combinations and cost-benefit analysis, the production cost of the lightweight FRP composite pipes can be decreased for the real-time applications.Peer reviewe
    corecore