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Amandine Marrel, Bertrand Iooss, Sébastien Da Veiga, Mathieu Ribatet. Global sensitivity
analysis of stochastic computer models with joint metamodels. Statistics and Computing,
Springer Verlag (Germany), 2012, 22, pp.833-847. <hal-00525489v2>

HAL Id: hal-00525489

https://hal.archives-ouvertes.fr/hal-00525489v2

Submitted on 23 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract The global sensitivity analysis method used

to quantify the influence of uncertain input vari-

ables on the variability in numerical model responses

has already been applied to deterministic computer
codes; deterministic means here that the same set of

input variables gives always the same output value.

This paper proposes a global sensitivity analysis method-

ology for stochastic computer codes, for which the re-

sult of each code run is itself random. The framework
of the joint modeling of the mean and dispersion of

heteroscedastic data is used. To deal with the com-

plexity of computer experiment outputs, nonpara-

metric joint models are discussed and a new Gaus-
sian process-based joint model is proposed. The rel-

evance of these models is analyzed based upon two

case studies. Results show that the joint modeling

approach yields accurate sensitivity index estima-

tiors even when heteroscedasticity is strong.
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1 Introduction

Many phenomena are modeled by mathematical equa-
tions which are implemented and solved using com-

plex computer codes. These computer models often

take as inputs a high number of numerical and phys-

ical variables. They can also generate several out-

puts (scalars or functions). For the development and
the analyses of such computer models, the global

Sensitivity Analysis (SA) method is an invaluable

tool (Saltelli et al. (2000), Kleijnen (2008), Helton

(2009)). It accounts for the whole input range of
variation, and tries to explain output uncertainties

on the basis of input uncertainties. These techniques,

which often refer to the probabilistic framework and

Monte Carlo methods, require a lot of simulations.

The uncertain input variables are modeled by ran-
dom variables and characterized by their probabilis-

tic density functions. The SA methods are used for

model calibration (Kennedy & O’Hagan (2001)), model

validation (Bayarri et al. (2007a), (2007b)), decision
making process (De Rocquigny et al. (2008)), i.e. all

processes where it is useful to know which variables

contribute most to output variability .

Current SA methods can handle deterministic

computer codes, that is codes providing the same

output values for the same input variables. Random-
ness is limited to model inputs, whereas the model

itself is deterministic. For example, global sensitiv-

ity analysis tools have been applied to nuclear waste

storage safety studies (Helton et al. (2006)) and pol-
lutant transport modeling in aquifers (Volkova et al.

(2008)). In such industrial studies, numerical models

are often too time consuming, preventing the global
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SA methods from being applied at once. To overcome

this problem, the time consuming computer code is

substituted by an approximate mathematical model,
called metamodel (Sacks et al. (1989), Fang et al.

(2006)). This function must be as representative as

possible of the computer code, with good prediction

capabilities. In addition, it must require a negligi-
ble calculation time. Several metamodels are clas-

sically used: Polynomials, splines, neural networks,

Gaussian processes (Chen et al. (2006), Fang et al.

(2006)).

This paper does not deal with deterministic com-

puter codes, but focuses on stochastic numerical mod-

els - i.e. codes yielding different output values even

with identical input variables. In other words, a stochas-
tic model refers to the random simulation case, as

introduced by Kleijnen (1997) for a queuing model.

Such a computer model is inherently stochastic be-

cause the simulator uses random numbers. Contrary
to noisy simulations (see for example Yeşilyurt et al.

(1996) and Forrester et al. (2006)), a random sim-

ulation is not tunable and involves a random seed.

The effect of this random seed on the output may

be chaotic: a slight variation in the random seed can
lead to a very different event realization. In the past,

these input variables have been called “discontinu-

ous parameters” (Zabalza et al. (2001)), “stochastic

parameters” (Zabalza et al. (2004)), “scenario pa-
rameters” (Ruffo et al. (2006)) or “uncontrollable

parameters” (Iooss & Ribatet (2009)). To avoid any

confusion, we refer now to the generic term “seed

variables”, since it refers to the original nature of

these input variables.

Typical stochastic computer codes are agent-based

models (Siebers et al. (2010)), for instance simulat-

ing disease propagation (Boukouvalas & Cornford
(2009)) or atmospheric pollution (Reich et al. (2009)).

There are also models involving partial differential

equations applied to heterogeneous random media,

for instance fluid flows in oil reservoirs (Zabalza et al.

(1998)) or acoustical wave propagation in turbulent
fluids (Iooss et al. (2002)). Other examples are the

unitary simulations of Monte Carlo neutronic mod-

els (computing elementary particle trajectories in a

nuclear reactor, Picheny et al. (2011)) and the La-
grangian stochastic models (computing particle tra-

jectories inside atmospheric or hydraulic turbulent

media, Pope (1994)).

To approximate stochastic computer codes by meta-

models, the simplest way is to model the mean and

dispersion (i.e. the variance) of computer code out-

puts by two polynomial linear-regressionmodels. This

is used in the well known context of experimental

data modeling under the name of Taguchian model
in Response Surface Methodology (Myers et al. (2009)).

Polynomial metamodels for robust optimization in

deterministic simulation are discussed in Dellino et

al. (2010). In stochastic simulation, Zabalza et al.
(1998) proposed to model the mean and dispersion

(i.e. the variance) of computer code outputs by two

interlinked Generalized Linear Models (GLMs). This

approach, called joint modeling, was previously stud-

ied in the context of experimental data modeling
(Smyth (1989), McCullagh & Nelder (1989)). How-

ever, the parametric form of GLMs is restrictive for

modeling complex computer code outputs. To by-

pass these limitations, Iooss & Ribatet (2009) sug-
gested to use nonparametric models such as Gener-

alized Additive Models (GAM, see Hastie & Tibshi-

rani (1990), Wood & Augustin (2002)). In this pa-

per, we develop a new joint metamodel, based upon

the Gaussian process (Gp) model, which is one of
the most relevant choices when dealing with com-

puter experiments (Sacks et al. (1989), Chen et al.

(2006)).

Iooss & Ribatet (2009) also developed a method
rooted in joint modeling to perform a global sensi-

tivity analysis of computer codes containing a func-

tional input (governed by a seed variable). Their re-

sults stressed that the total sensitivity index of the

seed variable can be derived just by taking the ex-
pectation of the dispersion component of the joint

model.

In this paper, we first recap how to build a joint

model when referring both to GLM and GAM. An
original methodology based upon Gp is then pro-

posed. The third section recalls the variance-based

method of global sensitivity analysis for determin-

istic models, and shows how it can be extended to

stochastic models using joint models. Particular at-
tention is paid to the calculation of the so-called

Sobol indices. The performance of the different joint

metamodels are compared in the next section for a

simple analytic function. Last, an industrial applica-
tion is presented; namely, on a reservoir engineering

case.

2 Joint modeling of mean and dispersion

Modeling the mean and variance of a response vari-

able against some explanatory controllable variables

is of primary concern in product development and
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quality engineering methods. For example in Phadke

(1989), experimentation is used to determine factor

levels so that the product is insensitive to poten-
tial variations in environmental conditions. In the

framework of robust design, it is equivalent to the

optimization of a mean response function while min-

imizing a variance function. A first approach con-
sists in building polynomial models approximating

the mean and variance separately (Vining & My-

ers (1990), Bursztyn & Steinberg (2006)), based on

repeated calculations with the same set of control-

lable input variables. This dual modeling approach
has been successfully applied in many situations, es-

pecially for robust conception problems. However,

our purpose here is to fit accurately both mean and

dispersion components. Within this context, it has
been shown that the dual model is less competitive

than the joint model which simultaneously models

the mean and variance (Zabalza et al. (1998), Lee &

Nelder (2003)). The same authors have also shown

that repeating calculations with the same set of con-
trollable variables is inefficient in the joint model-

ing approach. It is actually recommended to keep

all possible experiments to optimally cover the in-

put variable space (which can be highly dimensional
in real problems).

In this section, we describe three different joint

models based on the metamodels classically used in

the context of computer experiments. The computer
code output is denoted Y and the random input vari-

ables are denoted X = (X1, . . . , Xp). Input random

vector X has a known distribution in a bounded do-

main X of Rp.

2.1 Joint Generalized Linear Models

The class of GLM allows us to extend the class of

traditional linear models by the use of: (a) a distri-
bution which belongs to the exponential family and

(b) a link function which connects the explanatory

variables to the explained variable (Nelder & Wed-

derburn (1972)). The first component of the model
concerns the mean while the second one concerns the

dispersion. The mean is described as follows:

{

E(Yi) = µi, ηi = g(µi) =
∑

j xijβj ,

Var(Yi) = φiv(µi) ,
(1)

(Yi)i=1...n are independent random variables with

mean µi; xij are the observations of variable Xj ; βj

are the regression parameters which have to be esti-

mated; ηi is the mean linear predictor; g(·) is a dif-

ferentiable monotonous function called link function;
φi is the dispersion parameter and v(·) is the vari-

ance function. To estimate the mean component, the

functions g(·) and v(·) have to be specified. Some ex-

amples of link functions are the identity (traditional
linear model), root square, logarithm, and inverse

functions. Some examples of variance functions are

the constant (traditional linear model), identity and

square functions.

Within the joint model framework, the dispersion
parameter φi is no longer supposed to be constant as

in a traditional GLM. Indeed, it is assumed to vary

accordingly to the following model:
{

E(di) = φi, ζi = h(φi) =
∑

j uijγj ,

Var(di) = τvd(φi) ,
(2)

di is a statistic representative of dispersion, γj are

regression parameters which have to be estimated,

h(·) is the dispersion link function, ζi is the disper-

sion linear predictor, τ is a constant and vd(·) is the
dispersion variance function. uij are the observations

of the explanatory variable Uj . Variables (Uj) are

generally taken among the explanatory variables of

mean (Xj). However, they can also be different. To
ensure positivity, h(φ) = logφ is often taken as the

dispersion link function. In addition, statistic d rep-

resenting dispersion is generally considered as the

deviance contribution - which is approximately χ2

distributed. Therefore, as the χ2 distribution is a
particular case of the Gamma distribution, we have

vd(φ) = φ2 and τ ∼ 2.

Finally, the joint model is fitted by maximiz-

ing the Extended Quasi Loglikelihood (EQL, Nelder
& Pregibon (1987)). The EQL behaves as a log-

likelihood for both mean and dispersion parameters.

This justifies an iterative procedure to fit the joint

model. First, a GLM is fitted on the mean; then from

the estimate of d, another GLM is fitted on the dis-
persion. Weights for the next estimate of the GLM

on the mean are obtained from the estimate of φ.

This process can be repeated as often as required.

Thus, it allows for entirely fitting the joint model
(McCullagh & Nelder (1989)).

2.2 Extension to Generalized Additive Models

GAMs were introduced by Hastie & Tibshirani (1990).

They extended the linear terms in the predictor ex-

pression η =
∑

j βjXj of equation (1) to smooth
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functions η =
∑

j sj(Xj). The sj(.) are unspeci-

fied functions obtained from the iterative fit of data

by a smoothing function. GAMs provide a flexible
method for identifying nonlinear covariate effects in

exponential family models and other likelihood-based

regression models. Fitting GAMs introduces an ex-

tra level of iteration in which each sj(.) function is
alternately fitted assuming the others known. GAM

terms can be mixed quite generally with GLM terms

in deriving a model.

One common choice for sj is smoothing splines,

i.e. splines with knots at each distinct value of the
variables. In regression problems, smoothing splines

have to be penalized in order to avoid data over-

fitting. Wood & Augustin (2002) described in de-

tails how GAMs can be constructed using penalized
regression splines. Since numerical models often ex-

hibit strong interactions between input variables, the

incorporation of multidimensional smooth functions,

like bi-dimensional spline terms sij(Xi, Xj), is par-

ticularly important here.
Clearly, GAMs are a natural extension of GLMs.

Therefore, in order to overcome limitations of joint

GLM on practical cases, Iooss & Ribatet (2009) ex-

tended the joint GLM model to a joint GAM one.
In equations (1) and (2), the linear predictors are

replaced by sums of spline functions.

GAMs are generally fitted using penalized likeli-

hood maximization. For this purpose, the likelihood

is modified by adding a penalty term to each smooth
function to penalize its wigglyness. More precisely,

the penalized loglikelihood is defined as:

pℓ = ℓ+

p
∑

j=1

λj

∫

(

∂2sj
∂x2

j

)2

dxj (3)

where ℓ is the loglikelihood function, p is the to-

tal number of smoothing terms and λj are penal-

ized parameters which make it possible to balance

goodness of fit and smoothness. The estimation of
these penalized parameters is generally performed

using score minimization and selection by General-

ized Cross Validation (GCV) (Hastie & Tibshirani

(1990)). Extension to EQL models is straightforward

by substituting the likelihood function and deviance
d by their EQ analogous. In practice, all smooth-

ing parameters are jointly updated at each iteration

of the fitting procedure. Therefore, a GLM/GAM is

fitted for each trial set of smoothing parameters at
each iteration, while GCV scores are evaluated only

at convergence. One drawback of this approach is

that the convergence of the algorithm is not ensured.

2.3 Joint Gaussian process modeling

In the computer experiment community, one popu-

lar choice of metamodel is the Gaussian process one.

This model can be viewed as an extension of the krig-

ing method, a spatial data interpolation method, to
computer code data (Sacks et al. (1989)). Gp mod-

eling considers the deterministic response

y = f(X) (4)

of the computer code as a realization of a random
function YGp(X) defined as follows:

YGp(X) = f0(X) + Z(X) . (5)

f0(X) is a deterministic function (for example a poly-

nomial) that provides the mean approximation of the
computer code, and Z(X) is a Gaussian centered sta-

tionary stochastic process fully characterized by its

variance σ2 and correlation function R(·). Given a

learning sample of n simulation points (Xs, Ys) =
(

(x(1), y(1)), . . . , (x(n), y(n))
)

, the conditional distri-

bution of the response for a new input vector x∗ is

a Gaussian distribution with the two following mo-

ments :

E[YGp(x
∗)|Xs, Ys] = f0(x

∗) + k(x∗)tΣ−1
s (Ys − Fs),

(6)

Var[YGp(x
∗)|Xs, Ys] = σ2 − k(x∗)tΣ−1

s k(x∗), (7)

with Fs = f(Xs); k(x∗) is the covariance vector

between x∗ and the learning sample and Σs the co-

variance matrix of the learning sample. The condi-

tional mean (Eq. (6)) is used as a predictor and it
can be shown, using its analytical expression, that it

is an exact interpolator for the points of the learning

sample. The variance formula (Eq. (7)) corresponds

to the mean squared error (MSE) of this predictor
and is also known as the kriging variance. Under the

hypothesis of Gp model, this analytical formula for

MSE gives a local indicator of the prediction accu-

racy.

For stochastic computer models, using an exact
interpolator as the Gp is not pertinent. This prop-

erty can be relaxed using a nugget effect. In this case,

a constant term ξ (ξ > 0) is added to the covariance

function of the Gp:

Cov(Y (x), Y (u)) = σ2 (R(x− u) + ξδ(x − u)) (8)
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where δ(v) =

{

1 if v = 0,
0 otherwise.

However, doing so, we suppose that the dispersion
of the output is the same in the whole input variable

domain. This homoscedasticity hypothesis is some-

what limitative and an heteroscedastic nugget effect

can be considered. Recently, some authors (e.g. Klei-
jnen & van Beers (2005), Ginsbourger et al. (2008),

Ankerman et al. (2010)) showed the usefulness of

Gp for stochastic computer models in heteroscedas-

tic cases. This approach consists in modeling the

mean of the computer code with a Gp metamodel
for which the nugget effect is assumed to vary with

inputs (ξ(x)). Referring to the fitted Gp, one can de-

rive the dispersion statistic d introduced in Equation

(2) from the estimation of the MSE (given by the Gp
model). This model does not include any fitting of

the dispersion component but it involves a nugget

effect that is different for each point of the learning

sample. The dependence between dispersion and in-

puts is not really explained. Another approach, the
treed Gaussian process of Gramacy & Lee (2008) is

a fully non stationary model. It is then well-adapted

to heteroscedastic computer codes. However, once

again, this approach does not allow to obtain a meta-
model for both mean and dispersion components.

Therefore, we focus on another method which is
more relevant with the previous joint models: the

joint Gp model. Robinson et al. (2010) recently pro-

posed a semi-parametric dual modeling approach when

there is no replication. Their methodology is based

upon a Gp modeling for the mean component and
a GLM for the squared residuals, which yields a

parametric model for the dispersion. Kersting et al.

(2007) and more recently Boukouvalas & Cornford

(2009) introduced a joint model with a Gp for both
mean and dispersion components. First, a Gp is fit-

ted to the mean component. Its predictive distribu-

tion is then used to simulate a sample and compute

an estimation of the noise level at each point. The

MSE is used to compute several residuals for each
point and estimate dispersion. A second Gp model

is then fitted on the estimated dispersion. Finally, a

combined Gp is deduced from these two Gp mod-

els. The process can be repeated until convergence.
However, this methodology strongly depends on the

MSE formulation and, consequently, on the Gp hy-

pothesis, which is difficult to assess in practice.

In this paper, we prefer to deal only with the

residuals observed at each point, after approximat-

ing the mean by a Gp model. We propose the fol-

lowing methodology:

– Step1 : Gp modeling of the mean component with

homoscedastic nugget effect (8), denoted Gpm,1.

A nugget effect is required to relax the interpola-

tion property of the Gp metamodel, which would

yield zero residuals for the whole learning sam-
ple. We choose a first-degree polynomial trend

with f0(x) written as:

f0(x) = β0 +

p
∑

j=1

βjxj ,

where β = [β0, . . . , βp]
t is the regression parame-

ter vector. Such a function was shown to be suffi-

cient to capture the global trend of the computer

code (Marrel et al. (2008), Martin & Simpson

(2005)). The stochastic part Z(x) is considered as

a stationary process. For its correlation function,
we propose a multidimensional differentiable ex-

ponential (MDE) function. This function, which

is an anisotropic extension of the DE correla-

tion function introduced by Chilès and Delfiner
(1999) is defined as :

R(u,v) =

p
∏

l=1

(1 + θl|ul − vl|) exp(−θl|ul − vl|)

where θ = [θ1, . . . , θp]
t are the correlation pa-

rameters (also called hyperparameters) with θl ≥

0 ∀ l = 1, . . . , p. The MDE correlation function

offers a good compromise between the classical

exponential and Gaussian correlation functions

(it corresponds to the well-known Matérn cor-
relation function with a power hyperparameter

equals to 3/2). The MDE correlation is differ-

entiable like the Gaussian one and, consequently,

combined with a nugget effect, results in a smooth
modeling which is well-suited to extract the mean

component from noisy data. Moreover, the MDE

correlation function, like the exponential one, tends

to reduce the problems of ill-conditioned covari-

ance matrix often observed with Gaussian cor-
relation. Finally, on the analytical test in sec-

tion 4, the MDE correlation function yields the

best results in comparison with exponential and

Gaussian ones, which confirms the good proper-
ties of MDE correlation function. Note that all

Gp hyperparameters and the nugget effect are

estimated by maximum likelihood method.
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– Step2 : Gp modeling of the dispersion component

with homoscedastic nugget effect, denoted Gpv,1.

We compute the residuals from the predictor of
Gpm,1. Since there is no replication, we have only

one residual for each point of the learning sample.

No empirical estimation of the dispersion compo-

nent can be made. However, the squared residu-
als can be considered as a realization of a process

with the dispersion component as mean function.

Consequently, a Gp metamodel with a nugget ef-

fect is fitted to the squared residuals. Its predic-

tor is considered as an estimator of the dispersion
component. Because of the positivity constraint

on any variance estimator, a constant trend is

chosen (f0(x) = β0). A MDE correlation func-

tion is used for the same reasons as for Gpm,1.
Note that the exponential of a first-degree poly-

nomial could also be used for the trend.

– Step3 : Gp modeling of the mean component with

heteroscedastic nugget effect, denotedGpm,2. The

predictor of Gpv,1 provides an estimation of dis-
persion at each point. It is thus considered as the

value of the heteroscedastic nugget effect: the ho-

moscedastic hypothesis is removed. A new Gp,

Gpm,2, is fitted on data, with the estimated het-
eroscedastic nugget. The trend and correlation

function of Gpm,2 are similar to the ones ofGpm,1

and the hyperparameters are still estimated by

maximum likelihood.

– Step4 : Gp modeling of the dispersion component
with homoscedastic nugget effect, denoted Gpv,2.

The Gp on the dispersion component is updated

from Gpm,2 following the same methodology as

the one described in step 2.

Predictors of Gpm,2 and Gpv,2 provide respectively
an estimator for the mean and dispersion compo-

nents. This algorithm allows to start from an ho-

moscedastic hypothesis in order to arrive to an het-

eroscedastic hypothesis, while minimizing the effort
of optimization. It is possible to write a full Bayesian

model involving two Gps. However, in practice, this

theoretical formulation is not tractable, particularly

in moderate to high dimension cases. Consequently,

we propose an alternative based on a sequential al-
gorithm. Note that the usual solution to deal with

heteroscedastic cases is to use a sequential algorithm,

like in Zabalza et al. (2001) and Boukouvalas & Corn-

ford (2009). An appealing idea would be to repeat
steps 3 and 4 to improve our estimation of the het-

eroscedastic effect. However, it is not guaranteed that

such an iterative procedure converges. From our ex-

perience, a single update of Gpm,1 and Gpv,1, as pro-

posed in the methodology above, is enough to remove

the homoscedastic hypothesis.

3 Global sensitivity analysis

This section first considers deterministic, then stochas-

tic simulation. Global SA methods have already been

applied to deterministic computer codes. It amounts

to considering the following model:

f : Rp → R

X 7→ Y = f(X)
(9)

where f(·) is the model function (possibly analyt-
ically unknown), X = (X1, . . . , Xp) are p indepen-

dent input random variables with known distribution

and Y is the output random variable.

Among quantitative methods, variance-basedmeth-
ods are the most often used (Saltelli et al. (2000)).

The main idea of these methods is to evaluate how

the variance of an input or a group of inputs con-

tributes to the output variance. To define the sensi-

tivity indices, we use the unique functional ANOVA
decomposition of any integrable function on [0, 1]p

into a sum of elementary functions (see for example

Sobol (1993)):

f(X1, · · · , Xp) = f0 +

p
∑

i=1

fi(Xi) +

p
∑

i<j

fij(Xi, Xj)

+ . . .+ f12..p(X1, · · · , Xp) ,

(10)

where f0 is a constant and each function of the de-

composition respects the following condition:

E[fJ(XJ )] = 0 . (11)

In the equations above, we have used the usual index

set notation. For instance with J = {1, 2},XJ means

(X1, X2), and fJ means f12. Functions fJ are actu-
ally related to conditional expectations. We have:

fJ(XJ) =
∑

J′⊂J

(−1)|J|−|J′|
E [Y |XJ′ ] . (12)

The independence of all the Xi (i = 1, . . . , p) ensures

that decomposition (10) is unique and we can write
the model output variance as (Sobol (1993)):

Var [Y ] =

p
∑

i=1

∑

|J|=i

VJ(Y ) , (13)
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where Vi(Y ) = Var[E(Y |Xi)], Vij(Y ) = Var[E(Y |XiXj)]−

Vi(Y )−Vj(Y ), . . .. Variance-based sensitivity indices,

also called Sobol indices, are then defined by:

SJ =
VJ (Y )

Var(Y )
. (14)

The second order index Sij expresses the sensitivity
of the model to the interaction between variables Xi

and Xj and so on for higher orders effects. Interpre-

tation of these indices is straightforward as their sum

is equal to one (from equation (13)): the larger an in-
dex value, the greater the importance of the variable

or the group of variables linked to this index.

For a model with p inputs, the number of Sobol

indices is 2p − 1. Clearly, the number of indices gets
intractable as p increases. Thus, to express the over-

all sensitivity of the output to an input Xi, Homma

& Saltelli (1996) introduce the total sensitivity in-

dex:

STi
=
∑

J⊇i

SJ . (15)

For example, for a model with three input variables,

ST1
= S1 + S12 + S13 + S123.

Estimation of these indices can be done using

Monte Carlo simulations or alternative methods (FAST,
quasi-Monte Carlo, etc. see Saltelli et al. (2000)). Al-

gorithms were also recently introduced to reduce sig-

nificantly the number of model evaluations (Saltelli

et al. (2010)). As explained in the introduction, a
powerful method consists in replacing complex com-

puter models by metamodels with negligible calcu-

lation time (e.g. Volkova et al. (2008), Storlie et al.

(2009)). Estimation of Sobol indices by Monte Carlo

techniques (requiring thousands of simulations) can
then be done using these metamodels.

In this work, we do not consider deterministic

codes (Eq. (9)), but stochastic ones. Then, we intro-
duce a new input variable Xε, in addition to inputs

X = (X1, . . . , Xp). This additional input, indepen-

dent of X, is the seed variable discussed in the intro-

duction, and which makes the code stochastic. Thus,

our definition of a stochastic model is the following:

f : Rp × N → R

(X, Xε) 7→ Y = f(X, Xε) .
(16)

In practice, except for particular cases, an initial seed
variable is selected by the user. The rest of the ran-

dom number stream is “uncontrollable” because it is

managed by the computer code itself (Kelton et al.

(2007)). Therefore, classical sensitivity analysis tech-

niques, like Monte Carlo algorithms or metamodels,

cannot be used.
However, for a stochastic model as defined by

equation (16), joint metamodels (section 2) yield two

GLMs, two GAMs or two Gps, one for the mean and

another for the dispersion component:

Ym(X) = E(Y |X) (17)

Yd(X) = Var(Y |X) = E
[

(Y − Ym(X))2|X
]

. (18)

Referring to the total variance formula, the variance
of the output variable Y can be rewritten as:

Var(Y ) = Var [E (Y |X)] + E [Var (Y |X)]

= Var [Ym(X)] + E [Yd(X)] .
(19)

Furthermore, the variance of Y is the sum of the con-

tributions of all the input variablesX = (X1, . . . , Xp)

and Xε:

Var(Y ) = Vε(Y ) +

p
∑

i=1

∑

|J|=i

[VJ (Y ) + VJε(Y )] (20)

where we use the same notations as in equation (13)

and Vε(Y ) = Var[E(Y |Xε)], Viε(Y ) = Var[E(Y |XiXε)]−
Vi(Y )− Vε(Y ), . . .

Variance of the mean component Ym(X) denoted

hereafter Ym can be also decomposed:

Var(Ym) =

p
∑

i=1

∑

|J|=i

VJ (Ym) . (21)

Note that

Vi(Ym) = Var[E(Ym|Xi)]
= Var{E[E(Y |X)|Xi]}

= Var[E(Y |Xi)] = Vi(Y ) .

(22)

Moreover, sensitivity indices for variable Y accord-

ing to input variables X = (Xi)i=1...p can be derived
from equation (14):

SJ =
VJ (Ym)

Var(Y )
. (23)

These Sobol indices can be computed using the same

classical Monte Carlo techniques as for the deter-

ministic model. These algorithms are applied to the

metamodel defined by the mean component Ym of
the joint model.

Thus, all terms contained in Var[Ym(X)] of equa-

tion (19) have been considered. Then, E[Yd(X)] can
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be estimated by a simple numerical integration of

Yd(X) following the distribution of X. Yd(X) is eval-

uated with a metamodel, for example the dispersion
component of the joint model. Therefore, the total

sensitivity index of Xε is given by:

STε
=

Vε(Y ) +
∑p

i=1

∑

|J|=i VJε(Y )

Var(Y )
=

E[Yd(X)]

Var(Y )
.

(24)

As Yd(X) is a positive random variable, positivity of

STε
is guaranteed. In practice, Var(Y ) can be esti-

mated from the data or from simulations of the fitted

joint model, using equation (19). If Var(Y ) is com-

puted from the data, it may be better to estimate

E[Yd(X)] with Var(Y )−Var[Ym(X)] to satisfy equa-
tion (19). In our applications, the total variance will

be estimated using the fitted joint model.

In the case of a stochastic computer code whose

random nature is due to intrinsic noise, STε
has no

physical meaning, but can be used as a measure of

the stochastic nature of the model. If the seed vari-
able Xε manages one (or several) stochastic process

with a physical significance, STε
is interpreted as the

total sensitivity index of this stochastic process.

Finally, let us note that we cannot quantitatively

distinguish the various contributions in STε
(Sε, Siε,

Sijε, . . . ). Indeed, it is not possible to combine the

functional ANOVA decomposition of Ym(X) with

the functional ANOVA decomposition of Yd(X) in

order to deduce the unknown sensitivity indices. Form-

ing composite indices still remains an open problem
which needs further research. However, Iooss & Rib-

atet (2009) show that the analysis of the terms in a

regression model fitted to Yd and their t-values gives

useful qualitative information. For example, if an in-
put variable Xi is not present in Yd, we can deduce

the following correct information: Siε = 0. More-

over, if the t-values analysis and the deviance analy-

sis show that an input variable Xi has a smaller in-

fluence than another input variable Xj , we can sup-
pose that the interaction between Xi and Xε is less

influential than the interaction between Xj and Xε.

For a joint model which does not yield an explicit re-

gression model for Yd (like Gp), the same deductions
can be made based upon the sensitivity analysis of

Yd. If an input variable Xi is not influential on Yd,

we can deduce that Siε is equal to zero.

4 Application and numerical studies on a toy

example

The proposed method is first illustrated on an ar-

tificial analytical model with three input variables,
called the Ishigami function (Homma & Saltelli (1996),

Saltelli at al. (2000)):

Y (X1, X2, X3) = sin(X1)+7 sin(X2)
2+0.1X4

3 sin(X1)

(25)

whereXi ∼ U [−π;π] for i = 1, 2, 3. For this function,

all the Sobol sensitivity indices (S1, S2, S3, S12, S13,
S23, S123, ST1

, ST2
, ST3

) are known. This function is

used in most benchmarks of global sensitivity analy-

sis algorithms. In our study, the classical problem is

altered by considering X1 and X2 as the input ran-

dom variables, and X3 as the input generated by the
seed variable. It means that the X3 random values

are not used in the modeling procedure; this variable

is generated by the seed variable which is considered

to be uncontrollable.

However, sensitivity indices have the same theo-

retical values as in the standard case. For this analyt-

ical function case, the analytical expressions of the

mean component Ym(X1, X2) and dispersion com-
ponent Yd(X1, X2) can be directly computed:

Ym(X1, X2) = E(Y |X1, X2)

=

(

1 +
π4

50

)

sin(X1) + 7[sin(X2)]
2 ,

Yd(X1, X2) = Var(Y |X1, X2)

= π8

(

1

900
−

1

2500

)

[sin(X1)]
2 .

(26)

Note that the dispersion only depends on the input
variable X1. In this analytical example, only one in-

put variable (X1) interacts with the uncontrollable

one (X3); see equation (25). As a result, the effect of

X1 on the output is affected by the seed. On the con-

trary, the effect of the other input (X2) is not. Such
an example, where only one part of the inputs in-

teracts with the uncontrollable parameter, is of par-

ticular interest. Indeed, in practice, as illustrated by

PUNQ application in section 5, one objective can be
to discriminate the input variables between the ones

which interact with the uncontrollable and the ones

which do not interact.
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4.1 Joint metamodeling

To build the learning sample, a Monte Carlo ran-

dom sampling is used: 500 samples of (X1, X2, X3)

are simulated yielding 500 observations for Y . There

is no replication in the (X1, X2) plane because it

has been shown that repeating calculations with the
same set of controllable variables is inefficient in the

joint modeling approach (Zabalza et al. (1998), Lee

& Nelder (2003)). Therefore, we argue that it is bet-

ter to keep all the possible experiments to optimally
cover the input variable space (which can be highly

dimensional in real problems). To illustrate this phe-

nomenon, we also consider in section 4.2 a joint Gp

metamodel built on a design with replications, fol-

lowing the methodology recently proposed by Anken-
man et al. (2010). In practice, to generate the set

of controllable variables especially in the case of a

high number of variables, Latin hypercubes or quasi-

Monte Carlo sequences are preferred to pure Monte
Carlo samples (Fang et al. (2006)).

In this section, joint GLM, GAM and Gp mod-
els are compared. To evaluate the accuracy of the

metamodels for both Ym and Yd, we use the predic-

tivity coefficient Q2. It is the determination coeffi-

cient R2 computed from a test sample (composed
here by ntest = 10000 randomly chosen points):

Q2(Y, Ŷ ) = 1−

∑ntest

i=1

(

Yi − Ŷi

)2

∑ntest

i=1

(

Ȳ − Yi

)2 ,

where Y denotes the ntest true observations (or exact

values) of the test set, Ȳ their empirical mean and
Ŷ the metamodel predicted values. For each joint

model, two predictivity coefficients are computed us-

ing equation (26) to have the exact values: one for

Ym and one for Yd. The results are given by Table 1.

The GLM for Ym is a fourth order polynomial.

Only the explanatory terms are selected in our re-
gression model using analysis of deviance and the

Fisher statistics (McCullagh & Nelder (1989)). For

Yd, using analysis of deviance techniques, only X2
1

is found as explanatory variable. For the joint GAM

estimation, we keep some parametric terms by ap-
plying a term selection procedure. The Q2 results

for the mean component show the relevance of GAM

and Gp while the GLM is less efficient. The nonpara-

metric models are more accurate and adapted to fit
the Ishigami function which is strongly non linear.

For the dispersion component, the Q2 results illus-

trate the efficiency, even when there is no replication,

of joint Gp and GAM models (resp. Q2 = 0.91 and

Q2 = 0.92) and the inadequacy of GLM (Q2 < 0).

For the GAMs, the explanatory variableX1 is identi-
fied to model Yd; the interaction betweenX1 andX3,

the input generated by the seed variable, is therefore

retrieved. For the Gps where no explicit expression

is available, we compute the Sobol sensitivity indices
of the dispersion component in order to understand

which inputs are involved in the dispersion compo-

nent. We use a Monte Carlo algorithm to obtain

ST1
(Yd) = 0.999 and ST2

(Yd) = 0.008. These results

draw the same correct conclusion as joint GAM: X2

is not an explanatory factor for the dispersion and

only X1 interacts with X3 in the Ishigami function

(25).

In order to make a finer comparison between GLM,
GAM and Gp models, we examine how well they

predict the mean Ym(X1, X2) at inputs for which

we have no data. We can also compare the different

dispersion models Yd(X1). The exact analytical ex-

pressions of Ym and Yd are given in Eq. (26). Let us
remark that we visualize Yd versus X1 only because,

for GLM and GAM dispersion models, there is no

dependence in X2 and, for the Gp dispersion model,

there is an extremely small X2-dependence (we then
take X2 = 0). Figure 1 plots the theoretical Ym and

Yd surfaces (left panels) and their estimates derived

from the fitted joint GLM, joint GAM and joint Gp

models. As shown before, the joint GLM is inade-

quate for both Ym and Yd. The joint GAM and Gp
fully reproduce Ym. Spline terms of GAM are perfect

smoothers and the MDE correlation function used

for the Gp offers good smoothing properties com-

bined with the flexibility of Gp model. It prevents
Gp from being impacted by residual noise on the

observations. Besides, as it could be expected from

its good properties, the MDE correlation function

yields the best results in comparison with exponen-

tial and Gaussian ones which are not displayed. For
Yd, joint GP results are superior to joint GAM ones.

The joint Gp model finely reproduces the behaviour

of the dispersion component.

Note that for the two dispersion models in GAMs
and Gps, fitted observations have been taken from

the mean component residuals on the learning sam-

ple. An appealing idea would be to use another so-

lution by taking predicted residuals, for example by
applying a cross validation procedure. We tested this

approach for the joint Gp and, from our experience,

it does not improve the accuracy of the joint models
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Table 1 Results for the fitting of different metamodels for the Ishigami function. Both Q2 for the mean and the dispersion
components are given. In the formulas for GAM, s1(·), s2(·) and sd1(·) are three spline terms.

Q2(Ym) Q2(Yd) Formula

Joint GLM 0.80 -0.61 Ym = 2.17 + 2.56X1 + 1.93X2

2
− 0.28X3

1
− 0.25X4

2

log(Yd) = 1.78 − 0.04X2

1

Joint GAM 0.99 0.92 Ym = 3.52 − 2.43X1 + s1(X1) + s2(X2)
log(Yd) = 0.59 + sd1(X1)

Joint Gp 0.98 0.91 —
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Fig. 1 Mean component (up) and dispersion component (down) for the exact analytical model, Joint GLM, Joint GAM
and Joint Gp (Ishigami application).

(even for smaller size of learning sample). Worse, it

can make the model estimation less robust.

4.2 Sobol indices

Table 2 depicts Sobol sensitivity indices for the joint

GLM, joint GAM and joint Gp based upon equations

(23) and (24) and using Monte Carlo estimation pro-

cedure. Tens of thousands of joint model computa-
tions are made for one index estimation in order to

ensure convergence of Monte Carlo estimation. The

joint GLM gives only a good estimation of S1 and

S12 , while S2 and ST3
are badly estimated (relative

error greater than 50% for ST3
). The joint GAM and

GLM give very accurate estimations of all the Sobol

indices: negligible error for S1, S1, S12 and less than
5% of relative error for ST3

. The three joint models

correctly show a negligible interaction between X1

and X2. These results stress the efficiency of non-

parametric models and, for Gp, the interest of de-

veloping a robust methodology to use it as a joint
model. In conclusion, joint GAM and Gp provide

precise estimations of both sensitivity indices of the
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Table 2 Sobol sensitivity indices for the Ishigami function: exact and estimated values from joint GLM, joint GAM and
joint Gp.

Indices Theoretical Value Joint GLM Joint GAM Joint Gp
S1 0.314 0.319 0.310 0.312
S2 0.442 0.296 0.454 0.450
S12 0 2.10−4 2.10−4 0.004
ST3

0.244 0.385 0.236 0.233

input variables and total sensitivity index of the seed

variable.

As explained at the end of section 3, some con-
clusions on the various contributions in ST3

can be

drawn from the analysis of the dispersion compo-

nent. For the joint GLM and joint GAM, only X1

is involved in Yd (see Table 1). The deduced zero
interaction indices are: S23 = S123 = 0. Moreover,

it ensures that S13 > 0. Variation intervals can be

deduced from the elementary relations between sen-

sitivity indices (e.g. S1 ≤ ST1
, S13 ≤ ST3

, etc). For

the joint Gp, a sensitivity analysis of Yd shows an in-
fluence of X1 higher than 99.9% and yields the quali-

tative conclusion that X2 is not influential in Yd. The

same deduced interaction indices as for GLMs and

GAMs are made. All the obtained interactions and
variation intervals are compiled in Table 3. Even if

the interaction indices remain unknown, the deduc-

tions drawn by these analyses are correct and infor-

mative. This is due to the non separability of the

dispersion component effects.

Remark 1 To illustrate that Ym and Yd do not bring

enough information to quantitatively estimate all the

Sobol indices, we can consider the two following triv-

ial analytical models of two inputs:

Y1(X1, X2) = X2X1 ,
Y2(X1, X2) = X2 |X1|

(27)

where X1 and X2 are independent random variables

with zero mean and unit variance. Under these hy-

pothesis, Y1 and Y2 have different variance decom-

positions. Indeed, the Sobol indices for Y1 are: S1 =
S2 = 0 and S1,2 = 1, while for Y2: S1 = 0, S2 =

E(|X1|)
2 6= 0 and S12 6= 1. If X1 is considered as

the input random variable and X2 as the seed input

variable, it can be easily shown that Y1 and Y2 have

the same mean and dispersion components: Ym = 0
and Yd = X1

2. This example illustrates that Ym and

Yd do not bring enough information to quantitatively

estimate the different contributions in the total effect

of the seed variable. However, the sensitivity analy-

sis of Yd can yield interval variations for sensitivity

indices and also useful information concerning the

potential influence of the interactions.

In order to have stronger evidence for the perfor-

mance differences between joint GLM, joint GAM

and joint Gp, we perform 100 repetitions of the joint
models fitting process with different Monte Carlo

samples (keeping the learning sample size n = 500).

In an attempt to illustrate that repeating calcula-

tions with the same set of controllable variables is
less efficient in the joint modeling approach, we also

include a comparison with the joint Gp built on a de-

sign with replications. To do this, we keep the same

analytical form for the Gps on mean and dispersion

components as in our joint Gp methodology, but to
estimate them we follow the methodology recently

proposed by Ankenman et al. (2010). The same set

of controllable variables is repeated nrep times, each

replication corresponding to a different value of the
uncontrollable parameter. A first Gp is estimated

on the empirical mean of the set of controllable vari-

able. Then, a second Gp is adjusted on the empirical

variance. An estimation of the nugget effect at each

point is deduced from the predictor of this second
Gp divided by the number of replications. The Gp

on the mean is then updated using these nugget ef-

fect estimates. Here, we consider different number of

replications nrep = 10 and nrep = 20 and different
sizes of the learning sample in the (X1, X2) plane (re-

spectively 50 and 25) in order to have the same total

number of simulations (n = 500). Table 4 shows the

results of these computations. As previously, joint

GLM results show that this model is inadequate for
the Ishigami function. Q2 of the joint Gp dispersion

component is 10% larger than Q2 of the joint GAM

dispersion component. The Sobol indices estimates

for the joint GAM and joint Gp are both satisfac-
tory. Concerning the approach with replications, a

balance has to be found between the accuracy of the

empirical moments (the higher number of replica-

tions, the better) and the exploration of the control-

lable input space (the lower number of replications,
the better). We can observe that the mean compo-

nent and the Sobol indices are correctly estimated

with nrep = 10 but this number of replications is

not sufficient to estimate the variance component.
If we increase the number of replications, the accu-
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Table 3 Sobol sensitivity indices deduced from Yd analysis for the Ishigami function: exact and estimated values or
variation intervals from joint GLM, joint GAM and joint Gp.

Indices Theoretical Value Joint GLM Joint GAM Joint Gp
S13 0.244 ]0, 0.385] ]0, 0.236] ]0, 0.233]
S23 0 0 0 0
S123 0 0 0 0
ST1

0.557 ]0.319, 0.704] ]0.310, 0.546] ]0.312, 0.545]
ST2

0.443 0.296 0.454 0.454
S3 0 [0, 0.385] [0, 0.236] [0, 0.233]

racy of the variance component estimate is improved,

but the accuracy of the mean component and Sobol

indices estimates decreases. In all cases, better re-

sults (in terms of accuracy for mean and dispersion

components) are obtained by building the joint Gp
metamodel on a design without replications which

maximizes the exploration of the controllable input

space.

In conclusion, the Ishigami example shows that

the joint nonparametric models, and specially our

proposed joint Gp model, can fit complex heteroscedas-
tic cases for which classical metamodels are inade-

quate. Moreover, joint models offer a theoretical ba-

sis to compute efficiently global sensitivity indices of

stochastic models. An analytical model with strong

and high order interactions will probably strengthen
the superiority of the Gp joint model (because spline

high order interaction terms are difficult to include

inside a GAM). Besides, in the industrial application

of section 5, we only use the joint Gp model.

4.3 Convergence studies

In order to provide some practical guidance for the
sampling size issue, we perform a convergence study

for the joint Gp modeling and the estimated sensi-

tivity indices. We consider different learning sample

size n varying from 50 to 500. The learning points are
sampled by simple Monte Carlo and 100 replications

are made for each n. The different sets of points are

all sampled independently and there is no adaptive

approach here. The objective is only to illustrate the

convergence speed of the joint Gp predictivity and
to give an idea of the number of simulations required

in this analytical case with only 2 inputs.

Figure 2 shows some convergence results for the

accuracy on mean and dispersion components and

the estimation of total sensitivity index ST3
of the

input X3 generated by the seed variable. The predic-
tivity coefficientsQ2 on both Ym and Yd are obtained

from a test sample composed of 1000 randomly cho-

sen points.

We can notice the rapid convergence of the pre-

dictivity coefficient Q2(Ym) and the estimation of

ST3
. The speed of convergence for S1, S2 and S12

computed from Ym are not shown here but are sim-

ilar to the one of Q2(Ym). Accurate modeling of Ym

and estimations of Sobol indices are obtained as soon

as n = 100. Convergence of the predictivity coeffi-

cient Q2(Yd) is also observed but is slower than for

Ym. Several hundreds of simulations are required to
correctly fit the dispersion component. Thus, in the

case of strong and complex heteroscedasticity and

when no replication exists, the fitting of the disper-

sion can be relatively difficult. In practice, conver-

gence of estimated sensitivity indices and their con-
fidence interval (by a bootstrap technique for exam-

ple) can be plotted and examined visually. It can

be a good indicator of the accuracy in fitting Ym. It

can also point out the need of additional simulations.
Nevertheless, it does not totally ensure accuracy in

fitting the dispersion component.

5 An application case: the PUNQ model

The joint Gp metamodeling methodology is now ap-

plied to PUNQ (Production forecasting with UNcer-

tainty Quantification) test case which is an oil reser-
voir model derived from real field data (Manceau et

al. (2001)). The considered reservoir is surrounded

by an aquifer in the north and the west, and delim-

ited by a fault in the south and the east. The geo-
logical model is composed of five independent layers,

three of good quality (layers 1, 3 and 5) and two of

poorer quality. A multiphasis fluid flow simulator is

used to forecast the oil production during 12 years. 8

scalars variables characteristic of media, rocks, flu-
ids or aquifer activity are considered as uncertain:

the coefficient of aquifer strength (AQUI1), horizon-

tal and vertical permeability multipliers in good lay-

ers (resp. MPV1 and MPH1), horizontal and vertical
permeability multipliers in poor layers (resp. MPV2

and MPH2), coordinate of production well location

(P1Y), residual oil saturation after waterflood and
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Table 4 For the Ishigami function, from 100 repetitions of the joint GLM, joint GAM, joint Gp following our method-
ology and joint Gp with replications following Ankenman’s method (sample size of n = 500 Monte Carlo simulations):
exact and mean estimated values of Q2 and Sobol indices (with standard deviations sd).

Exact Joint GLM Joint GAM Joint Gp Joint Gp with replications
values Ankenman’s method

with nrep = 10 with nrep = 20
mean sd mean sd mean sd mean sd mean sd

Q2(Ym) 1 0.801 0.003 0.995 0.002 0.981 0.005 0.938 0.035 0.786 0.107
Q2(Yd) 1 -0.780 0.331 0.725 0.148 0.823 0.100 0.137 0.803 0.516 0.568

S1 0.314 0.309 0.023 0.295 0.020 0.295 0.029 0.286 0.084 0.265 0.094
S2 0.442 0.302 0.028 0.448 0.023 0.440 0.036 0.440 0.136 0.419 0.132
ST3

0.244 0.388 0.022 0.258 0.014 0.222 0.019 0.221 0.075 0.300 0.083

Fig. 2 For the Ishigami function and the joint Gp model, boxplot of Q2(Ym) (left), Q2(Yd) (center) and estimated ST3

in function of the learning sample size n.

after gas flood (resp. SORW and SORG). Addition-

ally to these 8 uncertain input variables, the porosity

map of the first layer is considered as unknown. Geo-

statistical simulation can be performed to obtain re-

alizations of the porosity map. The resulting spatial
random field cannot be summarized by a few scalar

values. Therefore, as explained in our introduction,

this geostatistical porosity map has to be consid-

ered as generated by a seed variable of the computer
model.

Among the simulator outputs, we focus here on
the produced oil rate after 12 years of exploitation.

The objective is to study the impact of both con-

trollable input variables and seed variable on the

forecast of produced oil rate. A sensitivity analy-

sis is carried out to identify the most influential in-
puts among the controllable variables, to quantify

the total part of uncertainty related to the porosity

map and to point out the potential interaction be-

tween the map and the controllable variables. This
sensitivity analysis would constitute, for example, a

preliminary step before an optimization (robust or

not) of tunable parameters like well locations. In this

case, the negligible variables identified in the sensi-

tivity analysis would be fixed and tunable parame-

ters would be jointly optimized if there are strong

interactions, or separately otherwise. Moreover, this

optimization could be done independently from the
uncertain porosity map or, if a strong influence of

the map with potential interactions is identified, a

more refined modeling of interactions between tun-

able parameters and uncontrollable ones should be
used for the optimization. Thus, the results of sensi-

tivity analysis can yield a guidance for a later opti-

mization.

To build the joint Gp model and to make the

sensitivity analysis, a learning sample is simulated.

The Latin hypercube sampling method is used to ob-

tain a sample of N = 1000 random vectors (each one
of dimension 8) for the controllable inputs. In addi-

tion, for each simulation, an independent realization

of the porosity map (denotedXǫ) is randomly chosen

among a basis of available porosity map realizations.
The N = 1000 simulations are computed with the

fluid flow simulator. Then, a joint Gp model is fit-

ted on simulations, following the proposed methodol-
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Table 5 Sobol sensitivity indices for the PUNQ Case estimated by joint Gp modeling.

Input variable 1st order index “quasi” total effect
AQUI1 0.138 0.154
MPH1 0.101 0.114
MPH2 0.024 0.033
MPV1 0 0
MPV2 0 0
P1Y 0.058 0.069
SORG 0 0
SORW 0.179 0.200

ogy in section 2.3. Sensitivity indices of controllable
variables are estimated from the model of the mean

component. Table 5 gives their first order indices and

“quasi” total effects. “Quasi” refers here to the total

effect including only the interactions with the other
controllable variables and not with Xǫ. The differ-

ence between first order and “quasi” total indices is

a good indicator of possible interactions.

Independently fromXǫ, the controllable variables

have mainly first order effects: there are few interac-

tions between the controllable variables. Their first

order effects represent 50% of the output variability.

The most influential controllable input is SORW fol-
lowed by AQUI, MPH1 and P1Y. Only these 4 con-

trollable variables are influential on the mean com-

ponent, all the others are negligible.

Then, the total effect of Xǫ can be computed us-

ing the estimated dispersion model: STǫ
= 0.412.

The porosity map has a high total effect of 41% and,

consequently, the controllable variables explain alone
59% of the output variability. Sensitivity analysis of

the dispersion model shows that the four variables

(MPH2, MPV1, MPV2 and SORG) do not interact

with Xǫ. Thus, these four variables, previously iden-

tified as non influential on the mean component, are
both non influential independently or not from the

porosity map. Concerning the others variables, the

one which potentially has the higher interaction with

Xǫ is SORW, followed by MPH1, P1Y and AQUI.
These results are coherent with the physics. Indeed,

the potential quantity of oil in a layer is linked to

the porosity (the higher the porosity, the higher the

potential quantity of oil). Moreover, referring to the

pressure of the aquifer, the lower SORW, the higher
the percentage of oil that can be extracted from the

layer. As the produced oil rate is linked to the poten-

tial quantity in the layer and the potential extracted

percentage, it is coherent to detect potential interac-
tion between the porosity map and SORW. As a con-

clusion, variables MPH2, MPV1, MPV2 and SORG

explain 59% of the output variance and potentially

interact with the porosity map to explain a part of
the 41% remaining.

To illustrate the usefulness of a joint model in
this application, we propose to use a graphical tool.

It consists in evaluating the proportions ∆ of obser-

vations that lie within the α-theoretical confidence

intervals which are built from the mean and disper-

sion models and with an additional Gaussian hy-
pothesis. Under this hypothesis, the α-theoretical

confidence interval CIα is given by :

CIα =
[

Ym(X)− tα
√

Yd(X);Ym(X) + tα
√

Yd(X)
]

(28)

where tα is the
(

1− α
2

)

quantile of the standard nor-

mal distribution. Here, we estimate CIα by replacing
Ym(X) and Yd(X) with the predictor of Gpm,2 and

Gpv,2, respectively (cf. section 2.3).

We can visualize the proportions ∆ (i.e. the ob-
served confidence intervals) against the α-theoretical

confidence interval. By definition, if a model is suited

for both mean and dispersion modeling, the points

should be located around the y = x line. As a con-
sequence, this plot is useful to compare the good-

ness of fit for the different models. Figure 3 gives

the results obtained with the joint and simple Gp

modeling. For the simple modeling, only the mean

component is fitted and a constant nugget effect is
used. It can be seen that the joint Gp is clearly the

most accurate model. Indeed, all its points are close

to the theoretical y = x line, while the simple Gp

tends to give too large confidence intervals. Thus,
the heteroscedasticity hypothesis is justified and, in

this case, a joint Gp model is clearly more competi-

tive than the simple Gp.

6 Conclusion

In this paper, we have used, in the context of stochas-

tic computer codes, the sensitivity analysis approach

based on joint metamodels, first proposed by Iooss
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Fig. 3 Proportion ∆ of observations that lie within the α theoretical confidence interval in function of the confidence
level α for PUNQ data. Joint Gp model, simple Gp model.

& Ribatet (2009). This method can be useful if the

following conditions hold:

– if the computer model contains some seed vari-
ables which are uncontrollable (the model is no

more deterministic but stochastic);

– if a metamodel is needed due to CPU time ex-

pensive computer model;
– if some of the seed variables interact with some

controllable inputs;

– if some information about the influence of the

interactions between the seed variables and the

other input variables is of interest.

The solution consists in modeling the mean and

the dispersion of the code outputs by two explana-

tory models. The classical way is to separately build
these models. In this paper, the use of the joint

modeling is preferred. Zabalza et al. (1998) applied

the joint GLM approach to model stochastic com-

puter codes. However, the behavior of some numer-
ical models can be complex and Iooss & Ribatet

(2009) introduced the joint GAM which has proven

its flexibility in harsh situations. In this paper, we

have introduced a new joint Gp model, based on

MDE correlation function. This latter model is shown
to be more efficient than the former to model dis-

persion component on a test function. More work

is needed in order to study this promising model

on stochastic computer codes involving many input
variables and strong interactions between model in-

puts. Moreover, this paper has shown that joint mod-

els offer a theoretical basis to compute Sobol sensi-

tivity indices in an efficient way. The analytical for-

mula (for joint GAM) and the sensitivity indices (for

joint Gp) of the dispersion component are useful to

complete the sensitivity analysis results of the com-
puter code.

The performance of our joint Gp model approach
was assessed on an industrial application. Compared

to other methods, the modeling of the dispersion

component allows to obtain a robust estimation of

the total sensitivity index of the seed variable. This

yields correct estimations of the first order indices of
the input variables. In addition, it reveals the influ-

ential interactions between the seed variable and the

other input variables. Obtaining quantitative values

for these interaction effects is still a challenging prob-
lem.

In future work, it would be convenient to test

the new approach recently proposed by Gijbels et
al. (2010). These authors propose to handle nonpara-

metrically the joint estimation of mean and disper-

sion functions in extended GLM. The starting point

for modeling are GLM in which we no longer ad-
mit a linear form for the mean regression function,

but allow it to be any smooth function of the covari-

ate(s). The mean regression function and the dis-

persion function are then estimated using P-splines

with difference type of penalty to prevent from over-
fitting.
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