71 research outputs found

    Genome-wide screen for genes involved in Caenorhabditis elegans developmentally timed sleep

    Get PDF
    In Caenorhabditis elegans, Notch signaling regulates developmentally timed sleep during the transition from L4 larval stage to adulthood (L4/A) . To identify core sleep pathways and to find genes acting downstream of Notch signaling, we undertook the first genome-wide, classical genetic screen focused on C. elegans developmentally timed sleep. To increase screen efficiency, we first looked for mutations that suppressed inappropriate anachronistic sleep in adult hsp::osm-11 animals overexpressing the Notch coligand OSM-11 after heat shock. We retained suppressor lines that also had defects in L4/A developmentally timed sleep, without heat shock overexpression of the Notch coligand. Sixteen suppressor lines with defects in developmentally timed sleep were identified. One line carried a new allele of goa-1; loss of GOA-1 Gαo decreased C. elegans sleep. Another line carried a new allele of gpb-2, encoding a Gβ5 protein; Gβ5 proteins have not been previously implicated in sleep. In other scenarios, Gβ5 GPB-2 acts with regulators of G protein signaling (RGS proteins) EAT-16 and EGL-10 to terminate either EGL-30 Gαq signaling or GOA-1 Gαo signaling, respectively. We found that loss of Gβ5 GPB-2 or RGS EAT-16 decreased L4/A sleep. By contrast, EGL-10 loss had no impact. Instead, loss of RGS-1 and RGS-2 increased sleep. Combined, our results suggest that, in the context of L4/A sleep, GPB-2 predominantly acts with EAT-16 RGS to inhibit EGL-30 Gαq signaling. These results confirm the importance of G protein signaling in sleep and demonstrate that these core sleep pathways function genetically downstream of the Notch signaling events promoting sleep

    Running Economy Benefits of Advanced Footwear Technology are Similar for Treadmill and Overground Running

    Get PDF
    Running economy (RE) is a key marker of distance running performance, as it indicates the oxygen cost required to run at a given speed. Multiple laboratory studies on treadmills have shown that new advanced footwear technology (AFT) improves RE. However, no studies have quantified the benefit of AFT in overground running. PURPOSE: Determine the impact of running surface (treadmill vs. overground) on the RE benefits of AFT. METHODS: Seventeen trained runners (9 male, \u3c 17:30 5k; 8 female, \u3c 20:20 5k) reported for two separate visits, which included one session on a stiff treadmill indoors and one session overground on a concrete path outdoors. Each visit, subjects completed 4 × 5-minute trials at 16 km·hr-1 (male) and 14 km·hr-1 (female) wearing both an advanced shoe (AFT) and a control shoe (CTRL). Test speeds were below the runners’ estimated lactate threshold and confirmed by blood lactate samples \u3c 4 mmol·L-1. Shoes were tested in duplicate on each visit in either an ABBA or BAAB sequence, counterbalanced across subjects. Surface test sequence (treadmill vs. overground) was also counterbalanced. RE (ml·kg-1·km-1) was calculated as oxygen consumption (VO2) normalized to running speed. VO2 was measured with a calibrated portable metabolic cart, and the average values of the final 2 minutes of each 5-minute trial were calculated. Treadmill running speed was fixed, and overground running speed was paced by an electronic scooter with cruise control. RE was analyzed by a 2-way (shoe × running surface) repeated measures ANOVA. RESULTS: There was a significant main effect for shoe (p \u3c .001) with AFT (174.2 ± 14.2 ml·kg-1·km-1) offering a 3.6 ± 1.6% RE benefit relative to CTRL (180.8 ± 14.8 ml·kg-1·km-1) independent of surface. There was also a significant main effect (p = 0.001) for surface, as RE was 6.8 ± 7.0% better during the overground (171.2 ± 16.8 ml·kg-1·km-1) condition compared to treadmill (183.9 ± 15.0 ml·kg-1·km-1), independent of shoe. However, there was no shoe × surface interaction (p = 0.289), as the RE benefit of AFT was 3.1 ± 2.7% overground and 4.1 ± 2.9% on the treadmill. CONCLUSIONS: These findings suggest that the RE benefits of AFT shown previously in a laboratory setting may be consistent across overground road conditions outdoors. As such, footwear researchers and manufacturers can more confidently translate laboratory findings to real world settings. It appears the portable metabolic cart used in this study may read lower RE values outdoors than in a laboratory setting, but this did not appear to impact the ability of the device to discern economy difference between footwear conditions

    Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep

    Get PDF
    Additional file 6: Decreased lag-2 function does not slow vulval development. The progeny of wild type and lag-2(q420) animals raised at 25.5 °C were selected at the L4 stage, prior to lethargus entry. Vulval eversion was scored after 3 h; the percentage of animals completing vulval eversion was recorded. Significance was assessed by student’s two-tailed t-test p value < 0.5; error bars represents SEM from 3 trials. Total number of animals: wild type n = 45 and lag-2(q420) n = 42

    KSU Philharmonic Orchestra with Quintessential! Woodwind Quintet

    Get PDF
    Kennesaw State University School of Music presents Philharmonic Orchestra Fall Concert featuring Quinessential! Woodwind Quintet.https://digitalcommons.kennesaw.edu/musicprograms/1684/thumbnail.jp

    Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways. (Résumé d'auteur

    Tick-, Mosquito-, and Rodent-Borne Parasite Sampling Designs for the National Ecological Observatory Network [Special Feature: NEON Design]

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways

    Low Enzymatic Activity Haplotypes of the Human Catechol-O-Methyltransferase Gene: Enrichment for Marker SNPs

    Get PDF
    Catechol-O-methyltransferase (COMT) is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous (val158met) position, designated as low (LPS), average (APS), and high pain sensitive (HPS), are associated with experimental pain sensitivity and risk of developing chronic musculoskeletal pain conditions. APS and HPS haplotypes produce significant functional effects, coding for 3- and 20-fold reductions in COMT enzymatic activity, respectively. In the present study, we investigated whether additional minor single nucleotide polymorphisms (SNPs), accruing in 1 to 5% of the population, situated in the COMT transcript region contribute to haplotype-dependent enzymatic activity. Computer analysis of COMT ESTs showed that one synonymous minor SNP (rs769224) is linked to the APS haplotype and three minor SNPs (two synonymous: rs6267, rs740602 and one nonsynonymous: rs8192488) are linked to the HPS haplotype. Results from in silico and in vitro experiments revealed that inclusion of allelic variants of these minor SNPs in APS or HPS haplotypes did not modify COMT function at the level of mRNA folding, RNA transcription, protein translation, or enzymatic activity. These data suggest that neutral variants are carried with APS and HPS haplotypes, while the high activity LPS haplotype displays less linked variation. Thus, both minor synonymous and nonsynonymous SNPs in the coding region are markers of functional APS and HPS haplotypes rather than independent contributors to COMT activity

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society
    corecore