177 research outputs found

    Spatio-temporal adaptive penalized splines with application to Neuroscience

    Get PDF
    Data analysed here derive from experiments conducted to study neurons' activity in the visual cortex of behaving monkeys. We consider a spatio-temporal adaptive penalized spline (P-spline) approach for modelling the firing rate of visual neurons. To the best of our knowledge, this is the first attempt in the statistical literature for locally adaptive smoothing in three dimensions. Estimation is based on the Separation of Overlapping Penalties (SOP) algorithm, which provides the stability and speed we look for.MTM2014-55966-P MTM2014-52184-P RETICS, Oftared - RD12/0034/001

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    Pyrosequencing-Based Analysis of the Mucosal Microbiota in Healthy Individuals Reveals Ubiquitous Bacterial Groups and Micro-Heterogeneity

    Get PDF
    This study used 16S rRNA-based pyrosequencing to examine the microbial community that is closely associated with the colonic mucosa of five healthy individuals. Spatial heterogeneity in microbiota was measured at right colon, left colon and rectum, and between biopsy duplicates spaced 1 cm apart. The data demonstrate that mucosal-associated microbiota is comprised of Firmicutes (50.9%±21.3%), Bacteroidetes (40.2%±23.8%) and Proteobacteria (8.6%±4.7%), and that interindividual differences were apparent. Among the genera, Bacteroides, Leuconostoc and Weissella were present at high abundance (4.6% to 41.2%) in more than 90% of the studied biopsy samples. Lactococcus, Streptococcus, Acidovorax, Acinetobacter, Blautia, Faecalibacterium, Veillonella, and several unclassified bacterial groups were also ubiquitously present at an abundance <7.0% of total microbial community. With the exception of one individual, the mucosal-associated microbiota was relatively homogeneous along the colon (average 61% Bray-Curtis similarity). However, micro-heterogeneity was observed in biopsy duplicates within defined colonic sites for three of the individuals. A weak but significant Mantel correlation of 0.13 was observed between the abundance of acidomucins and mucosal-associated microbiota (P-value  =  0.04), indicating that the localized biochemical differences may contribute in part to the micro-heterogeneity. This study provided a detailed insight to the baseline mucosal microbiota along the colon, and revealed the existence of micro-heterogeneity within defined colonic sites for certain individuals

    Out of the Pacific and Back Again: Insights into the Matrilineal History of Pacific Killer Whale Ecotypes

    Get PDF
    Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses to partitioned mitochondrial genome sequences to better resolve the pattern of past radiations in this species. Our phylogenetic reconstructions indicate that in the North Pacific, sympatry between the maternal lineages that make up each ecotype arises from secondary contact. Both the phylogenetic reconstructions and a clinal decrease in diversity suggest a North Pacific to North Atlantic founding event, and the later return of killer whales to the North Pacific. Therefore, ecological divergence could have occurred during the allopatric phase through drift or selection and/or may have either commenced or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current was particularly vigorous

    Killer whale genomes reveal a complex history of recurrent admixture and vicariance

    Get PDF
    Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree‐like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non‐Antarctic lineages is further driven by ancestry segments with up to fourfold older coalescence time than the genome‐wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome‐wide data to sample the variation in ancestry within individuals

    Scaling of maneuvering performance in baleen whales: larger whales outperform expectations

    Get PDF
    Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.We thank the crews of many research vessels including the R/V John Martin, R/V Fluke, ARSV Laurence M. Gould, R/V Sanna, M/V Antonie, M/V Northern Song, the Cascadia Research Collective and the Shallow Marine Surveys Group; in particular, we thank John Douglas, Andrew Bell, Shaun Tomlinson, Steve Cartwright, Tony D'Aoust, Dennis Rogers, Kelly Newton, Heather Riley, Gina Rousa and Mark Rousa. We also thank Brandon L. Southall, Alison K. Stimpert and Stacy L. DeRuiter for their role in collecting data as part of the SOCAL-BRS project. We thank Matt S. Savoca, Julian Dale and Danuta M. Wisniewska for assistance with data collection. Finally, we thank John H. Kennedy, Michael A. Thompson and the NSF Office of Polar Programs.Ye
    corecore