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Abstract 

Reconstruction of the demographic and evolutionary history of populations assuming a 

consensus tree-like relationship can mask more complex scenarios, which are prevalent in 

nature. An emerging genomic toolset, which has been most comprehensively harnessed in the 

reconstruction of human evolutionary history, enables molecular ecologists to elucidate 

complex population histories. Killer whales have limited extrinsic barriers to dispersal and 

have radiated globally, and are therefore a good candidate model for the application of such 

tools. Here, we analyse a global dataset of killer whale genomes in a rare attempt to elucidate 

global population structure in a non-human species. We identify a pattern of genetic 

homogenisation at lower latitudes and the greatest differentiation at high latitudes, even 

between currently sympatric lineages. The processes underlying the major axis of structure 

include high drift at the edge of species’ range, likely associated with founder effects and allelic 

surfing during post-glacial range expansion. Divergence between Antarctic and non-Antarctic 

lineages is further driven by ancestry segments with up to four-fold older coalescence time than 

the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our 

study further underpins that episodic gene flow is ubiquitous in natural populations, and can 

occur across great distances and after substantial periods of isolation between populations. 

Thus, understanding the evolutionary history of a species requires comprehensive geographic 

sampling and genome-wide data to sample the variation in ancestry within individuals.   
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1 | INTRODUCTION 

Genetic divergence of isolated populations can be interrupted by episodic gene flow during 

periods of spatial contact, which can erode genetic differences between populations (Durand 

et al., 2009; Gompert et al., 2010), rescue small isolated populations (Frankham, 2015), and 

maintain standing genetic variation that can act as a substrate for future adaptation (Brawand 

et al., 2014; Meier et al., 2017). The geographic context of ancestral spatial contact is difficult 

to elucidate from the contemporary distribution of modern populations (Pickrell & Reich, 

2014; Foote, 2018; Peñalba et al., 2018), especially in marine species, which can have 

dynamic ranges due to the low energetic cost of movement and few physical barriers in the 

oceans (Gagnaire et al., 2015; Kelley et al., 2016). Additionally, ancestral episodes of 

admixture may have occurred via now-extinct ‘archaic’ populations (Racimo et al., 2015) or 

sister species (Fraïsse et al., 2015), further complicating the inference of the biogeographic 

history of ancestry components from the spatial distribution of contemporary populations. 

However, periods of admixture leave genomic signatures that can be used to infer the direction, 

extent and timing of ancestral gene flow (Patterson et al., 2012; Sousa & Hey, 2013; Racimo 

et al., 2015; Duranton et al., 2018). Divergence-with-gene-flow is often studied at local 

scales, but could influence global genetic structure and variation through connected networks 

of populations (Novembre et al., 2008; Booth Jones et al., 2018).  

 

Killer whales have a global distribution rivalling that of modern humans, yet they can exhibit 

fine-scale geographic variation in ecology and morphology (Ford et al., 1998; Durban et al., 

2017), reflecting variation in their demographic and evolutionary history (Hoelzel et al., 2007; 

Morin et al., 2015; Foote et al., 2016). The best-studied ecotypes are the mammal-eating 

‘transients’ and fish-eating ‘residents’ found in partial sympatry throughout the coastal waters 

of the North Pacific (Ford et al., 1998; Saulitis et al., 2000; Matkin et al., 2007; Filatova et 

al., 2015). Four decades of field observations have found that residents and transients are 

socially isolated and genetically differentiated across their geographic range (Hoelzel & 

Dover, 1991; Barrett-Lennard, 2000; Ford, Ellis & Balcomb, 2000; Hoelzel et al., 2007; 

Morin et al., 2010; Parsons et al., 2013; Filatova et al., 2015). There has been a contentious 

debate regarding whether the formation of these two ecotypes was initiated in sympatry 

(Moura et al., 2015), or results from secondary contact of two distinct lineages (Foote et al., 

2011; Foote & Morin, 2015, 2016). 
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In the waters around the Antarctic continent, killer whales have diversified into distinct 

morphs, partially overlapping in their ranges (Pitman & Ensor, 2003; Pitman et al., 2007; 

Durban et al., 2017). These include type B1, which is commonly observed hunting seals in the 

pack-ice; type B2, which has been observed foraging in open water for penguins; and type C, 

which is most commonly observed in the dense pack-ice, and is thought to primarily feed on 

fish (Pitman & Ensor, 2003; Pitman & Durban, 2010, 2012; Durban et al., 2017). Perhaps 

surprisingly given their highly distinct morphological forms (Pitman & Ensor, 2003; Pitman 

et al., 2007; Durban et al., 2017), the Antarctic types are inferred from previous genomic 

analyses to have diversified from a recent shared ancestral lineage following an extended 

genetic bottleneck (Morin et al., 2015; Foote et al., 2016). However, the reconstruction of the 

evolutionary relationships among ecotypes, and how these relate to a more globally distributed 

dataset, has proved challenging due to incomplete lineage sorting and admixture, and a paucity 

of genomic data from a wider geographic distribution (Foote & Morin, 2016). 

 

Here we fill this gap by providing 27 additional genomes to a global dataset totalling 47 

genomes and trace population history of separation and admixture. First, we describe the global 

patterns of biodiversity, then we focus on the history of well characterised ecotypes of the 

North Pacific and Antarctica to test between the opposing hypotheses of simple history of 

vicariance versus a more complex (and previously hidden) history involving ancient secondary 

contact between divergent lineages. 

 

2 | MATERIALS AND METHODS 

2.1 | Dataset 

The genomes of 26 individuals that best represented the known global geographic and genetic 

diversity of this species, were sequenced to a mean of 5´ coverage, hereafter referred to as the 

global dataset (Figure 1a). For a subset of analyses, we further included 20 previously 

sequenced genomes (Supporting Information Table S1): four additional genomes each from 

the North Pacific transient and resident ecotypes, and Antarctica types B1, B2 and C, hereafter 

to referred to as the ecotype dataset (Supporting Information Figure S1; Foote et al., 2016), 

and 10 RAD-seq generated genotypes hereafter referred to as the RAD dataset (Supporting 

Information Figure S1; Moura et al., 2015). In addition, we sequenced an outgroup sample 

of a long-finned pilot whale (Globicephala melas) from a mass stranding at Ratmanoff beach, 
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Kerguelen island in the Southern Ocean and included sequencing reads of the bottlenose 

dolphin (Tursiops truncatus, Short Read Archive accession code SRX200685). 

 
2.2 | Library building, sequencing and mapping.  

Samples were selected from a global dataset of 452 individuals that best represented the known 

global geographic and genetic diversity of this species (Morin et al., 2015). Where possible, 

we selected identifiable individuals from longitudinally studied populations, e.g. Crozet 

Archipelago (Guinet & Tixier, 2011); Gibraltar (Esteban et al., 2016); Iceland (Samarra & 

Foote, 2015) and Scotland (Beck et al., 2014).  

 

DNA was extracted from skin biopsies using a variety of common extraction methods as per 

Morin et al. (2015). Genomic DNA was then sheared to an average size of ~500 bp using a 

Diagenode Bioruptor Pico sonication device. The sheared DNA extracts were converted to 

blunt-end Illumina sequencing libraries using New England Biolabs (Ipswich, MA, USA) 

NEBNext library kit E6040L. Libraries were subsequently index-amplified for 20 cycles using 

a KAPA HiFi HotStart PCR kit (Kapa Biosystems, Wilmington, Ma. USA) in 50-µl reactions 

following the manufacturer’s guidelines. The amplified libraries were then purified using a 

QIAquick PCR purification kit (Qiagen, Hilden, Germany) and size-selected on a 2% agarose 

gel in the range 422-580 bp using a BluePippin instrument (Sage Science, Beverly, MA. USA). 

The DNA concentration of the libraries was measured using a 2100 Bioanalyzer (Agilent 

Technologies, CA, USA); these were then equimolarly pooled and sequenced across four lanes 

of an Illumina HiSeq4000 platform using paired-read PE150 chemistry and two lanes using 

single-read SR100 chemistry.  

 

Read trimming, mapping, filtering and repeat-masking was conducted as per Foote et al. 

(2016), with the exception that the previous study masked regions with a combined coverage 

of 200´ across all samples, here we masked regions of low (less than a third of the mean) and 

excessive (more than twice the mean) combined coverage; regions of poor mapping quality 

(Q<30); and regions called as Ns in the reference sequence, all assessed using the 

CALLABLELOCI tool in GATK (McKenna et al., 2010; DePristo et al., 2011) and 

subsequently masked using BEDtools (Quinlan & Hall, 2010). Sites were further filtered to 

include only autosomal regions, except where stated otherwise, and only sites with a base 

quality scores >30 were used in all downstream analyses. 
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Changes in the cluster generation chemistry from bridge amplification to exclusion 

amplification has been reported to result in increased leakage of reads between indexes in 

pooled samples on a lane of the new Illumina sequencing platforms, which include the 

HiSeq4000 (Sinha et al., 2017). To assess the extent of leakage between indexes we mapped 

the sequencing reads from two HiSeq4000 lanes to a haploid killer whale mitochondrial 

genome (KF164610.1). Mitochondrial genomes had previously been sequenced using the 454 

Life Sciences (Roche) and Illumina HiSeq2000 sequencing platforms (Morin et al., 2010; 

2015) and were used as a reference panel. The consensus sequence generated from the 

HiSeq4000 sequencing reads for this study, were 100% identical for the same individuals in 

the reference panel (Morin et al., 2010; 2015). We then quantified contamination from leaked 

reads based on the protocol for assessing the extent of human contamination in Neanderthal 

sequenced data (Green et al., 2010). We inspected reads from a North Pacific ‘offshore’ killer 

whale, which mapped to the mitochondrial genome at 695´ mean coverage (±72 S.E.) after 

filtering to remove low-quality bases (Q<30). At sites where the nucleotide was known to be 

private to the offshore sequence, we checked the counts of reads that concurred with the 454 

Life Sciences (Roche) sequence generated from long-range PCR amplicons for the same 

individual (Morin et al., 2010), and the counts of reads that matched sequences of one or more 

of the other individuals pooled on the same HiSeq4000 lane. Counts of the mismatch alleles 

were uniformly low (mean < 0.5% of reads per site). Our results therefore concur with recent 

studies (Owens et al., 2018; van der Valk et al., 2019) that the rate of index swapping is low 

on the new Illumina platforms, and provide confidence that leakage between indexes did not 

greatly influence the inferred genotype likelihoods or the inferred genetic relationship among 

individuals. 

 

2.3 |Principal component analysis 

The relationship of the samples in the global dataset to the killer whale ecotypes were explored 

using PCAngsd, a Principal Component Analysis (PCA) for low depth next-generation 

sequencing data using genotype likelihoods (GLs), thereby accounting for the uncertainty in 

the called genotypes that is inherently present in low-depth sequencing data (Meisner & 

Albrechtsen, 2018). We restricted the analyses to sites greater than ³20Kb apart to avoid 

linkage and covered to a minimum of 2´ by reads of q-score ³ 30 in all individuals, and which 

were on autosomal scaffolds ³10Mb in length, which accounted for 1.5 Gb (~64%) of the 
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genome (prior to masking). First, we estimated covariance of the combined global and ecotype 

datasets. After pruning SNPs to reduce linkage, a total of 225,281 SNPs were considered in 

this analysis. The eigenvectors from the covariance matrix were generated with the R function 

‘eigen’, and significance was determined with a Tracy–Widom test (Tracy & Widom, 1994; 

Patterson, Price & Reich, 2006) performed in the R-package AssocTest (Wang et al., 2017) 

to evaluate the statistical significance of each principal component identified by the PCA. To 

reduce the influence of variable sample sizes among populations, we then repeated the analyses 

with a subset of 25 samples from the global dataset, removing the Norwegian sample, which 

belongs to the same metapopulation as the Icelandic sample (Foote et al., 2011). 

 

2.4 | Individual assignment and admixture analyses  

An individual-based assignment test was performed using NGSadmix (Skotte, Korneliussen 

& Albrechtsen, 2013), a maximum likelihood method that bases its inference on genotype 

likelihoods. As for the PCA analysis, we ran the NGSadmix twice, once with the combined 

global and ecotype datasets (46 samples) and once with the global dataset (26 samples). As 

above, analyses were restricted to autosomal scaffolds ³10Mb in length. NGSadmix was run 

with the number of ancestral populations K set from 1–10. For each of these K values, 

NGSadmix was re-run five times for each value of K, and with different seeds to ensure 

convergence. SNPs were further filtered to include only those covered in at least 26 individuals 

with a probability of P < 0.000001 of being variable as inferred by the likelihood ratio test and 

removing sites with a minor allele frequency of 0.05, so that singletons were not considered. 

Finally, SNPs were pruned to account for linkage as above, resulting in the analyses being 

based on 290,309 variant sites. 

 

2.5 | Distance-based phylogenetic inference 

The genetic relationships among individuals within the dataset were further reconstructed with 

ngsDist (Vieira et al., 2015) using distance-based phylogenetic inference based on pairwise 

genetic distances. ngsDist takes genotype uncertainty into account by avoiding genotype 

calling and instead uses genotype posterior probabilities estimated by ANGSD. A block-

bootstrapping procedure was used to generate 100 distance matrices, obtained by repetitively 

sampling blocks of 500 SNPs from the original data set of 6,974,134 SNPs. Pairwise genetic 

distances among the global dataset were visualised as a phylogenetic tree using the distance-

based phylogeny inference program FastME 2.1.4 (LeFort, Desper & Gascuel, 2015).  
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2.6 | Pairwise sequentially Markovian coalescent  

We used seqtk (https://github.com/lh3/seqtk) to combine 32 haploid male X-chromosome 

scaffolds of >1Mb each and totalling 91Mb, to construct pseudo-diploid sequences. The PSMC 

model estimates the Time to Most Recent Common Ancestor (TMRCA) of segmental blocks 

of the genome and uses information from the rates of the coalescent events to infer Ne at a 

given time, thereby providing a direct estimate of the past demographic changes of a population 

(Li & Durbin, 2011). The method has been validated by its successful reconstructions of 

demographic histories using simulated data and genome sequences from modern human 

populations (Li & Durbin, 2011). A consensus sequence of each bam file was generated in 

fastq format sequentially using the SAMtools mpileup command with the –C50 option to 

reduce the effect of reads with excessive mismatches (Li et al., 2009); bcftools view –c to call 

variants; lastly, vcfutils.pl vcf2fq to convert the vcf file of called variants to fastq format. The 

fastq files of X-chromosomes from two different males generated during the previous step were 

then merged using seqtk and PSMC inference carried out using the recommended input 

parameters for human autosomal data (Li & Durbin, 2011), i.e. 25 iterations, with maximum 

TMRCA (Tmax in units of 2N0 time) = 15, number of atomic time intervals (n) = 64 (following 

the pattern 1*4 + 25*2 + 1*4 + 1*6), and initial theta ratio (r) =5. Plots were scaled to real time 

as per (Li & Durbin, 2011), assuming a generation time of 25.7 years (Taylor et al., 2007) 

and a neutral mutation rate of the X-chromosome (μX) derived as μX=μA[2(2+α)]/[3(1+α)], 

assuming a ratio of male-to-female mutation rate of α = 2 (Miyata et al., 1987) and an 

autosomal mutation rate (μA) of 2.34×10-8 substitutions/nucleotide/generation (Dornburg et 

al., 2011). This gave us an estimated μX = 2.08×10-8 substitutions/nucleotide/generation. Only 

males were used in these analyses (19 out of the 26 sample global dataset), which included 

transient, resident, Antarctic types B1 and C as our focal ecotypes (our 5´ coverage type B2 

genome sequence was generated from a female); and from our global dataset we included the 

sequences of samples from Gabon, Gibraltar, New Zealand, North Pacific offshore ecotype, 

Eastern Tropical Pacific (ETP)-Clipperton Island, Iceland, Gulf of Mexico, Brazil, Southern 

Ocean, SW. Australia, Chatham Islands, Crozet Archipelago, Hawaii, ETP–Mexico, and W. 

Australia. 

 

2.7 | Inferring admixture from D- and F-statistics  

To investigate whether ecotype pairs evenly shared derived alleles with outgroup populations, 
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or whether one ecotype shared an excess of derived alleles with outgroups suggesting either 

recent shared ancestry or introgression, we estimated the D-statistic (Green et al., 2010) for 

various combinations of ecotypes and outgroups. For example, if the sympatric North Pacific 

resident and transient ecotypes are considered to be the in-group, and X is a global outgroup 

sample, the test can be used to evaluate if the data are inconsistent with the null hypothesis that 

the tree (((resident, transient), X), dolphin) is correct and that there has been no gene flow 

between X and either resident or transient, or any populations related to them. The definition 

used here is from Durand et al. (2011):  

𝐷 =
𝑛ABBA − 𝑛BABA
(𝑛ABBA + 𝑛BABA) 

Where in the tree given above, nABBA is the number of sites where resident shares the 

ancestral allele with the dolphin, and transient and X share a derived allele (ABBA sites); and, 

nBABA is the number of sites where transient shares the ancestral allele with the dolphin, and 

resident and X share a derived allele (BABA sites). Under the null hypothesis that the given 

topology is the true topology, we expect an approximately equal proportion of ABBA and 

BABA sites and thus D = 0. The significance of the deviation from 0 was assessed using a Z-

score based on jackknife estimates of the standard error of the D-statistics. This Z-score is 

based on the assumption that the D-statistic (under the null hypothesis) is normally distributed 

with mean 0 and a standard error achieved using the jackknife procedure. The tests were 

implemented in ANGSD and performed by sampling a single base at each position of the 

genome to remove bias caused by differences in sequencing depth at any genomic position. An 

error in our script reversed the sign of the value of D in a previous study (Foote et al., 2016), 

thus results differ in the direction of gene flow between that study and this, but do not change 

the conclusions drawn in that study, i.e. that some ecotypes are admixed.  

 

The f3-statistic is based on the quantification of genetic drift (change of allele frequencies) 

between pairs of populations in a tree using variance in allele frequencies (Reich et al., 2009; 

Patterson et al., 2012; Peter, 2016). The f3-statistic can provide evidence of admixture, even 

if gene flow events occurred hundreds of generations ago (Patterson et al. 2012). These tests 

are of the form f3(A;B,C), where a significantly negative value of the f3 statistic implies that 

population A is admixed (Patterson et al., 2012). f3-statistics were computed using the 

estimators described in Patterson et al. (2012), obtaining standard errors using a block jack-

knife procedure over blocks of 1,000 SNPs. 
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When a potentially admixed population is identified the admixture proportions can be 

estimated using the ratio of f4-statistics. The expected value of the statistic f4(A,B; C,D) would 

be zero if we see no overlap in the paths of allele frequency changes between A and B, and 

between C and D through the tree. The expected value of the statistic f4(A,B; C,D) will be 

negative and significantly different from zero if allele frequency changes between A and B and 

between C and D take paths in the opposite direction along a shared edge within the tree; or 

positive and significantly different from zero if the drift between A and B and between C and 

D share overlapping paths in the same direction along an edge within the tree (see illustrative 

figures in Foote & Morin, 2016) . The f4-statistic is not sensitive to post-admixture drift and 

can provide evidence of admixture, even if gene flow events occurred hundreds of generations 

ago (Patterson et al., 2012). To better identify the source populations that have admixed with 

the North Pacific transient ecotype we used the closely related pilot whale as an outgroup and 

estimated f4(NZ, pilot whale; X, transient) and compared these with an estimate of f4(NZ, pilot 

whale; resident, transient). Patterson et al. (2012) defined the f4-ratio test as: 

𝑓+(C, O; 	X, B)
𝑓+(C, O; 	A, B)

 

Where A and C are a sister group, B is sister to (A,C), X is a mixture of A and B, and O is the 

outgroup. This ratio estimates the ancestry from A, denoted as α, and the ancestry from B, as 

1-α. It important to remember that neither the transient nor resident represent unadmixed 

lineages (see results), however, they do appear from past studies to represent the two most 

differentiated populations in the North Pacific (Hoelzel et al., 2007; Parsons et al., 2013; 

Morin et al., 2010, 2015). F4-statistics were computed using the estimators described in 

Patterson et al. (2012), obtaining standard errors using a block jack-knife procedure over 

blocks of 1,000 SNPs. 

 

2.8 | Detecting archaic tracts 

The prevalence of private alleles in Antarctic types B1, B2 and C, as identified by the PCA, 

suggested potential archaic introgression from a now extinct (or otherwise unsampled) killer 

whale lineage or sister taxon. Archaic tracts with a distinctly older TMRCA than the genome-

wide average can be identified even without an archaic reference genome. Private alleles 

resulting from de novo mutation along the branch to the Antarctic should be approximately 

randomly distributed across the genome, whereas tracts introgressed from a divergent lineage 

after vicariance of the Antarctic types from other populations, or differentially sorted from 

structure in an ancestral population will contain clusters of private alleles, the density of which 
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will depend upon the divergence time of the introgressing and receiving lineages (Racimo et 

al., 2015). Since tract length is a function of recombination rate and time, tracts from ancestral 

structure are expected to be shorter than recently introgressed tracts due to the action of 

recombination (Racimo et al., 2015).  

 

We therefore set out to screen for genomic tracts of consecutive or clustered private alleles in 

the Antarctic types. To ensure the results are comparable despite variation between samples in 

coverage at some sites, we randomly sampled a single allele at each site from each diploid 

modern genome. For the outgroup we used all variants found in a dataset consisting of the 

following widely distributed non-Antarctic samples: Gabon, Gibraltar, New Zealand, North 

Pacific offshore, resident and transient ecotypes, ETP–Clipperton Island, Iceland, Norway, 

Newfoundland, Hawaii, ETP–Mexico, Scotland and W. Australia; i.e. samples that show no 

evidence of admixture with the Antarctic types in either the PCA or NGSadmix analyses. For 

the ingroup we used type B2, which from the f3-statistics appeared to be the least admixed of 

the Antarctic types. Thus, we consider only variants found in type B2, which are not found in 

the widely distributed 14 non-Antarctic samples listed above. 

 

We then used a Hidden Markov Model (HMM) to classify 1 kb windows into ‘non-archaic’ 

and ‘archaic’ states based on the density of private alleles (Skov et al., 2018). The background 

mutation rate was estimated in windows of 100 kb, using the variant density of all variants in 

non-Antarctic populations. We then weighted each 1 kb window by the proportion of sites not 

masked by our RepeatMasker and CallableLoci bed files. The HMM was trained using a set of 

starting parameters based on those used for humans (Skov et al., 2018). We trained the model 

across five independent runs, varying the starting parameters each time to ensure consistency 

of the final parameter input. Posterior decoding then determines whether consecutive 1 kb 

windows change or retain state (‘archaic’ or ‘non-archaic’) dependent upon the posterior 

probability.  

 

3 | RESULTS 

Our results highlight that the distinctiveness of the killer whale ecotypes as described in the 

Introduction section, reflects their demographic and evolutionary histories, which include deep 

ancestral splits masked by more recent admixture. The latter confounding the inference of the 

relationships among these populations as a simple bifurcating tree-like model. 
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3.1 |Genome sequences  

Short-read sequence data were generated for 26 individuals comprising the global dataset, 

resulting in a mean coverage of 5´ coverage of the autosomal region of the killer whale 

genome. For some analyses, these data were combined with 20 previously sequenced 2´ 

coverage genomes from the ecotype dataset (Foote et al., 2016) and ~20´ coverage RAD-seq 

data (Moura et al., 2015). 

  

3.2 |Principal Component Analysis: genetic variation segregates in Antarctic types and 

resident ecotype 

In a PCA that included the ecotype dataset, the Antarctic types (B1, B2 and C) separated out 

from all other killer whales along PC1 (Figure 1b), which explained 24.2% of the variation 

(Supporting Information Figure S2a). The resident ecotype formed a distinct cluster which 

separated out from a third cluster containing the transient ecotype and all other samples along 

PC2 (Figure 1b), explaining 9.7% of the variation (Supporting Information Figure S2a). 

Both first and second components were statistically significant: P < 0.001. This result was 

replicated when published RAD-seq data for a sub-Antarctic Marion Island sample were 

included (Supporting Information Figure S3a). The transient ecotype partially segregates 

from other samples along PC4, which explains 2.6% of the total genetic variation (Supporting 

Information Figure S4). 

 

Uneven sampling of different demes can influence the inference of population clusters in 

admixture and PCA plots (McVean, 2009; Gilbert, 2016; Lawson, van Dorp & Falush, 

2018). For example, when the Norwegian and Icelandic samples, which originate from the 

same deme, are both included in the PCA, they segregate from the other samples along PC2 

(Supporting Information Figure S5). After reducing the dataset used in the PCA to one 

sample per population to reduce this bias, differences between the Antarctic types and all other 

killer whales continue to explain the greatest and only significant (P < 0.001) component of 

variation in the data (Figure 1c; Supporting Information Figure S2b). This pattern remains 

even when just a single type B1 sample (i.e. no B2 or C samples) is included, and likewise for 

single B2 and C samples, albeit with less variation (~11%) explained by PC1 (Supporting 

Information Figure S6). Reducing the dataset to one sample per population results in a change 

in clustering along PC2, along which samples are distributed, to some extent, reflecting a cline 
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from the North Atlantic to the North Pacific, but with the resident and offshore samples 

intermediate between Atlantic and Pacific samples (Figure 1c).  

 

3.3 | Individual assignment and admixture analyses support PCA inference 

The results of the PCAs are reflected in the admixture plots inferred by NGSadmix (Figure 

1d,e). The uppermost hierarchical level of structure, inferred from the greatest step-wise 

increase in log likelihood (DK; Evanno, Regnaut, & Goudet, 2005) identified two clusters 

(Supporting Information Figure S7). As in the PCA, one cluster consisted of Antarctic types 

B1, B2 and C, the other a mostly homogenous cluster of all other killer whales, albeit with 

‘Antarctic’ ancestry detected in some southern hemisphere samples (Figure 1d,e). When the 

ecotype dataset is included, we find the second highest DK from K=2 to K=3 clusters, in which 

the North Pacific resident ecotype forms a discrete cluster (Figure 1d). 

 

PCA and STRUCTURE-like admixture models use similar information and generate similar 

axes of variation (Patterson, Price & Reich, 2006; Lawson, van Dorp & Falush, 2018). Both 

methods are likely to identify the samples with the greatest population-specific drift that 

therefore share rare derived alleles or have lost ancestral alleles from standing variation, as the 

major axes of structure (Lawson et al., 2018). Accordingly, both PCangsd and NGSadmix 

identified the uppermost hierarchical level of structure within our dataset as being between the 

Antarctic types and all other killer whales (Figure 1). The spatial distribution of samples within 

the PCA plot can be considered as being representative of the mean pairwise coalescent times 

between each pair of samples (McVean, 2009). Changes in frequency or the loss of neutral 

alleles through population specific drift will result in more recent mean coalescence among 

individuals, thereby causing them to cluster together and segregate from other populations 

along the axes of the PCA (McVean, 2009). Our results are therefore consistent with previous 

findings of a shared demographic history of the Antarctic types that included a shared 

population bottleneck and substantial drift (Morin et al., 2015; Foote et al., 2016). However, 

our finding that this pattern in the PCA is retained when just a single Antarctic sample is 

included (Figure S6), indicates this pattern is not just driven by the shared loss of standing 

variation in the Antarctic types, but that alleles explaining a significant proportion of the 

observed genetic variation coalesce within that single sample in those analyses. This suggests 

that there is are a large number of alleles private to the Antarctic types contributing towards 

the pattern of global genetic variation in killer whales. It should be noted that at higher values 
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of K further structuring is identified within our dataset; for example, at K=7 Antarctic types 

B1, B2 and C form three discrete clusters as per Foote et al. (2016). However, due to our 

sampling scheme, our focus in this study was not to identify regional structuring, but to identify 

the major axes of global structure and to infer the underlying processes. 

 

3.4 | ‘Archaic’ tracts in Antarctic types suggest ancient admixture with an ancient ‘ghost’ 

population  

The HMM method for detecting archaic tracts based on private allele density (Skov et al., 

2018) inferred 1,897 tracts totalling 8,119 kb of the tested 41 Mb scaffold as archaic in 

Antarctic type B2 with a posterior probability of ≥0.5 (Supporting Information Figure S8). 

Thus, up to 21.6 % of the genomic region analysed was inferred to be potentially comprised of 

archaic ancestry. However, a proportion of these windows inferred to be in the archaic state 

with a posterior probability of ≥0.5 may be false positives. Considering windows inferred as 

archaic with posterior probabilities of ≥0.8 identified 18 archaic tracts totalling 224 kb or 0.5% 

of the tested 41 Mb scaffold. 

 

The emission probabilities of the HMM are modelled as Poisson distributions with means of 

λArchaic = µ ∙ L ∙ TArchaic for the archaic state and λIngroup = µ ∙ L ∙ TIngroup for the non-archaic (or 

ingroup) state (Skov et al., 2018), where L is the window size (1000 bp) and µ is the mutation 

rate (2.38 x10-8; Dornburg et al., 2011). This allows us to estimate the mean TMRCA of the 

archaic and ingroup windows with the corresponding segments in the outgroup dataset. The 

TMRCA between the archaic tracts within type B2 and the corresponding genomic regions in 

the outgroup is a Poisson distribution around a mean of 9,786 generations (~251 KYA, 

assuming a generation time of 25.7 years; Taylor et al., 2007). The estimated TMRCA 

between the non-archaic tracts within type B2 and the corresponding genomic regions in the 

outgroup is a Poisson distribution around a mean of 2,429 generations (~62 KYA). Thus, the 

genome of type B2 appears to be admixed, comprising of approximately 80% ancestry that 

coalesces with the ancestry of the outgroup during the previous glacial period (Marine Isotope 

Stage 5), and approximately 20% ancestry derived from an unsampled lineage that coalesces 

with the ancestry of the outgroup during an earlier glacial cycle (Marine Isotope Stage 8). 

 

Tracts inferred to be in the archaic state with a posterior probability of ≥0.5 were on average 

between 5 and 6 windows long, i.e., between 5 and 6 kb; an order of magnitude shorter than 
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introgressed archaic tracts in non-African humans (Skov et al., 2018). Considering just the 

tracts called as archaic with posterior probabilities of ≥0.8, the average tract length was 12-13 

kb. The estimation of the time of introgression from tract length is dependent upon 

recombination rate (r), which has not yet been estimated for killer whales. However, assuming 

a constant value of r approximated to the mean r estimated for the human genome of 1.2 × 

10−8/bp (1.2 cM/Mb; Dumont & Payseur, 2008) places the age of tracts 5.5 kb long to 

approximately 14,000 generations ago, i.e. older than TArchaic (Supporting Information 

Figure S9). A recombination rate of ³5.0 × 10−8/bp (5.0 cM/Mb) would be required for such 

short tract lengths to have introgressed during the last 2,500 generations, i.e. close to TIngroup 

(Supporting Information Figure S9). Considering tracts of 12.5 kb length suggests a time of 

introgression between TArchaic and TIngroup of approximately 7,000 generations (assuming r = 

1.2 × 10−8/bp). Assuming a recombination rate for killer whales in the range of humans thus 

suggests a scenario different from the recent introgression from Neandertals into the lineage of 

non-African humans. Instead, the source of archaic ancestry tracts in type B2 killer whales is 

better explained by ancestral population structure. This therefore requires a scenario in which 

these tracts were the minor component of the ancestry (i.e., the lineage that contributed less to 

the gene pool, see Schumer et al., 2018) of an admixed ancestral killer whale population 

between TArchaic and TIngroup, and this ancestry was therefore already being broken up by 

recombination prior to TIngroup (Figure 2a).  

 

A PCA plot of SNPs occurring within the 1 kb windows inferred by the HMM as being in the 

archaic state (at posterior probability >0.5) highlighted the role of these archaic tracts in 

contributing to the major axis of structure in our global dataset (Figure S2b). It also indicates 

variation among types B1, B2 and C in the sharing of variants within these tracts. A PCA 

estimated from the non-archaic tracts (not shown) generated similar PCs and eigen values to 

Figure 1c and so the differentiation of the Antarctic types is not driven solely by the archaic 

tracts. 

 

3.5 | PSMC suggests an early split of transients, and ancestral vicariance and admixture in 

Antarctic types 

To better understand the chronology of the divergence of killer whale ecotypes, we employed 

a method that drew inference from the distribution of the lengths of shared Identity-by-State 

(IBS) tracts to investigate coalescence rates through time. We created pseudo-diploid 
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sequences by combining the phased haploid non-pseudoautosomal X-chromosome sequences 

from two different males and used PSMC (Li & Durbin, 2011) to estimate changes through 

time in the coalescent rate between the two X-chromosome haplotypes. The y-axis of a PSMC 

plot is driven by both changes in population structuring and demography and is more accurately 

interpreted as an estimate of the inverse of the rate of coalescence at any point in time 

represented along the x-axis (Mazet et al., 2016). Pseudo-diploids comprised of two haploid 

male X-chromosome sequences can therefore be used to infer the approximate population split 

time between two populations (Li & Durbin, 2011). When populations diverge and all gene 

flow between them ceases, the accumulation of new mutations and loss of diversity through 

drift will be population specific (Figure 3a). Population divergence therefore manifests itself 

in the pseudo-diploid sequence as heterozygote sites that break up long homozygous tracts 

from which more recent coalescent events are inferred. This results in an upsweep along the y-

axis of the PSMC plot approximately at the point of cessation of gene flow (Li & Durbin, 

2011). Post-divergence migration between the two demes being compared can result in a more 

recent coalescence of post-divergence mutations, shifting the upsweep closer to the present 

along the x-axis (Cahill et al., 2016).  

 

Applying this approach, we infer decreasing coalescence from the upsweep in estimated Ne 

from 200-300 KYA between the transient and all tested populations (Figure 3b). In contrast, 

coalescence does not appear to decrease between the resident and these same populations until 

approximately 100 KYA (Figure 3b). In other words, the resident shares a higher proportion 

of longer IBS tracts within the X-chromosome with the tested global samples, representing 

more recent recombination events, than the transient does with those same populations. Or to 

put it another way, the mean TMRCA of the X-chromosome is older between the transient 

ecotype and the populations tested here, than between the resident ecotype and those same 

populations. We interpret this as an earlier matrilineal fission and divergence from these 

globally distributed samples by the ancestor of the present-day transient ecotype, and a later 

founding of the ancestor of the present-day resident ecotype. This is consistent with earlier 

estimates of TMRCA based on mitochondrial genomes (Morin et al., 2015) and the inferred 

timing of founder bottlenecks based on nuclear genomes (Foote et al., 2016). 

 

Comparing coalescent patterns of the X-chromosome of a type B1 male and a type C male with 

the global dataset we find that the B1-global pseudo-diploid plots follow a similar trajectory to 

the transient-global plot, whereas the C-global pseudo-diploid plot upsweep suggests a more 
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recent decrease in coalescence with the global samples (Figure 3c). Thus, despite the 

covariance of allele frequencies and resulting clustering in the PCA and admixture plots 

(Figure 1), type B1 and type C differ in their sharing of shorter IBS segments with a TMRCA 

>100 KYA. An upsweep of inferred Ne in plot of the types B1 and C pseudo-diploid 

commencing between 200-300 KYA, stalls at approximately 90 KYA and declines between 

90-50 KYA, before increasing again (Figure 3c). The increase in coalescence, estimated 

between 50-90 KYA, implies a period of admixture between types B1 and C. The bootstrap 

plots illustrate the variation in ancestry across the X-chromosome (Figure 3d).  

 

3.6 | Comparing mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) tree topologies 

A distance-based tree estimated from pairwise genetic differences is only partially concordant 

with the mitochondrial DNA tree (Supporting Information Figure S10). Thus, in some cases 

genetic variation of the nuclear genome is shared among samples reflecting the matrilineal 

fission process that drives divergence in social and population structure in most killer whale 

populations studied to date (Ford, 2009); in other cases, geographically proximate samples 

with divergent mtDNA haplotypes cluster in the nuclear tree, suggesting a role for long-range 

matrilineal dispersal and subsequent gene flow in shaping patterns of nuclear genome diversity. 

 

3.7 | D-statistics indicate Antarctic types B1, B2 and C differ in their sharing of derived 

alleles with outgroup populations 

The D-statistic (Green et al., 2010) considers a tree-like relationship among four populations, 

e.g. (ecotype1, ecotype2; X, dolphin), and estimates whether X shares an excess of derived 

alleles with one of the two ecotypes in the ingroup. Significant sharing of derived alleles 

between an in-group and X indicates either introgression from X (or a closely related 

population) into one ecotype, but not the other; or that the tree topology is incorrect, and X 

belongs in the in-group. Estimation of D(type B2, type C; X, dolphin) found that 19 out of 23 

tests were considered significant based on Z-score > 3, and that these 19 samples shared an 

excess of derived alleles with type C relative to type B2 (Figure 4a). A similar result was 

obtained when type B2 was swapped for type B1, i.e. D(type B1, type C; X, dolphin); in this 

test type C shares a significant excess of derived alleles with all outgroups (X), except the 

sample from the Crozet Archipelago. There was no significant difference between type B1 and 

type B2 in the sharing of alleles derived in any of the outgroup samples (X) (Supporting 

Information Figure S11). 
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3.8 | D-statistics indicate Pacific resident and transient ecotypes differ in their sharing of 

derived alleles with outgroup populations 

Estimation of D(transient, resident; X, dolphin) found that while none of the global outgroup 

samples shared a significant excess of derived alleles with the transient ecotype, a widely 

geographically distributed set of 16 out of 24 samples shared a significant (Z-score < -3) excess 

of derived alleles with the resident ecotype (Figure 4b). This may indicate that the topology 

(transient, resident; X, dolphin) is incorrect, and that in these 16 tests (resident, X) is the correct 

in-group, which would be consistent with the hypothesis of secondary genetic contact between 

the transient and resident ecotypes (Foote et al., 2011). We therefore compared D(X, resident; 

transient, dolphin) and D(X, transient; resident, dolphin) to assess this possibility (Figure 4c).  

 

When we consider alleles purportedly derived in the transient (i.e. where X and resident are 

the ingroup) there is no significant sharing of excess derived alleles between any population 

represented by (X) and the transient ecotype. However, when X was a non-North Pacific 

sample, there was significant sharing of derived alleles between the resident and transient 

ecotypes (Figure 4c). When we consider X and the transient as the ingroup (i.e. alleles 

purportedly derived in the resident) the North Pacific offshore, ETP–Clipperton Island, New 

Zealand, Gibraltar, Gabon and Scotland samples all shared a significant excess of derived 

alleles with the resident ecotype (Figure 4c). These same populations generated the most 

strongly negative D-statistics in the test D(transient, resident; X, dolphin) (Figure 4b) and 

share a more recent common maternal ancestor with the resident than the transient ecotype 

based on mitochondrial genome phylogeny (Morin et al., 2015; Supporting Information 

Figure S10). We therefore interpret these results as a further indication that the resident 

ecotype diverged more recently from these six populations than it did from the transient, but 

that gene-flow between the resident and transient has subsequently occurred, most likely 

within the North Pacific. A comparison of D(transient, resident; X, dolphin) and D(transient, 

offshore; X, dolphin) indicates correlated (Pearson’s correlation coefficient: r23 = 0.9609, p < 

0.00001) sharing of derived alleles between the resident and X, and between the offshore and 

X (Supporting Information Figure S12) supports this inference of recent shared ancestry 

between the North Pacific resident and offshore ecotypes. 

 

3.9 | F-statistics indicate admixture between transient and resident lineages 
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The f3-statistic is based on the quantification of covariance of allele frequencies (often referred 

to as shared drift) between pairs of populations in a tree using variance in allele frequencies 

(Reich et al., 2009; Patterson et al., 2012). To identify admixed ecotypes, we estimated f3-

statistics of the form f3(ecotype; X, Y). Significantly negative f3-statistics indicate varying levels 

of admixture between the ecotype and X, and between the ecotype and Y, so the estimate of 

allele frequency differences between the ecotype and X are negatively correlated with the 

differences in allele frequencies between the ecotype and Y. F3-statistics were minimized and 

significantly (Z-score < -3) negative when estimating f3(transient; X, Y), with the exception of 

when both X and Y were Antarctic types (Figure 5, Supporting Information Figure S13). 

This result indicates the transient ecotype is admixed with one or more of the donor 

populations, or with closely related populations with partly shared derived ancestry with the 

donor population (see for example the outgroup case in Patterson et al., 2012). The most 

negative f3-statistics were estimated for tests when Hawaiian and/or Mexican ETP samples 

represented X and Y (see columns 1 & 2 of the lower diagonal of Figure 5), consistent with the 

results from PCA (Figure 1c) and D-statistics (Figure 4b,c). Based upon f4-ratio tests, the 

Hawaiian and Mexican ETP samples shared a higher proportion of transient than resident 

ancestry (Supporting Information Figure S14).  

 

3.9 | F-statistics indicate drift is greater than any admixture in Antarctic types 

F3-statistics were positively maximized when Antarctic type B2 was the target ecotype for all 

tested combinations of X and Y (Figure 5, Supporting Information Figure S13). Positive and 

non-significant f3-statistics can arise despite admixture, for example, if population specific 

post-admixture drift in the target population is so large, it masks gene flow from the tested 

donor populations (Patterson et al., 2012). The extent of drift in type B2 is such that it acts as 

an outgroup in f3-statistics, the same way that African genomes (e.g. Yoruban or Mbuti) are 

often used as an outgroup when comparing shared ancestry of Eurasian populations as X and Y 

in studies of human populations (e.g. Seguin-Orlando et al., 2014; Pagani et al., 2016). 

Therefore, we estimate the highest positive f3-statistics for tests when X and Y are known to 

originate from closely related populations, for example, f3(B2; Norway, Iceland) (Figure 5). 
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4 | DISCUSSION 

The present-day major axes of global genetic structure in killer whales are associated with the 

strongest drift having occurred in populations at the high latitude extremes of the species range. 

This pattern likely reflects some of the major demographic events in the last tens of millennia 

of the history of this species and is consistent with the expectations of range expansion theory 

(Excoffier, Foll & Petit, 2009). We find that populations that have expanded into areas 

inaccessible during the LGM (e.g. Antarctica and the Northern Atlantic and Pacific waters) or 

have undergone some other long-range dispersal (e.g. the resident ecotype) have the greatest 

differentiation from neighbouring populations, indicating they have undergone the greatest 

drift in allele frequencies; a phenomenon known as allele surfing (Excoffier & Ray, 2008). 

The same high latitude populations show expansion from a small ancestral founder lineage 

based on the TMRCA of the mitochondrial genome (Morin et al., 2015) and coalescence 

patterns in the nuclear genome (Foote et al., 2016). Our results therefore expand the model of 

the evolution of population structure in the North Pacific proposed by Hoelzel et al. (2007), 

i.e. strong founder effects from ancestral colonising matrilines, to partially explain the major 

axes of structure in killer whales at high latitudes including Antarctica and the Northeast 

Atlantic (Norway and Iceland). However, despite these commonalities in the demographic and 

evolutionary histories of high latitude killer whale populations, the Antarctic types B1, B2 and 

C stand out as explaining by far the most significant component of global genomic variation in 

this species.  

 

Accordingly, we find an additional source of genetic variation in the Antarctic types in the 

form of private alleles clustered within short archaic tracts. The majority of the genome of the 

Antarctic types coalesces in the shared ancestral bottlenecked population and has a mean 

TMRCA of approximately 60 KYA with a widely distributed dataset of outgroup samples 

(Figure 2). However, we also find short ancestry tracts which have an estimated mean TMRCA 

of over 200 KYA with corresponding genomic regions in these same outgroup samples (Figure 

2). Thus, the genomes of Antarctic killer whales contain ancestry reflecting deeper coalescence 

during a previous glacial cycle. This is supported by our analysis of changes in coalescence 

rate through time between X-chromosome haplotypes of Antarctic types B1 and C using 

PSMC, which although coarse, also indicate two peaks in coalescence, one at ~60 KYA and 

another >200 KYA. There is further support for an older and younger coalescence among 

Antarctic types from the TMRCA of mitochondrial genomes (see Supporting Information 
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Figure S15; Morin et al., 2015). We hypothesize that this pattern in the mtDNA phylogeny is 

the result of replacement of mtDNA haplotype diversity of the Antarctic types during this 

episode of admixture between 50-90 KYA inferred from the PSMC plot (Figure 2d). The 

fixation of an introgressed mtDNA haplotype would be dependent upon admixture rate and 

effective population size (see Posth et al., 2017); high admixture rates and low Ne would be 

needed to drive the near fixation of the ancestral mtDNA lineage in types B1, B2 and C and the 

pattern observed in the B1-C pseudo-diploid PSMC plot. Considering all these lines of 

investigation together, we interpret the results as being indicative of cyclical range expansions 

and contractions concurrent with the glacial cycles. Antarctic populations would be able to 

expand their range southwards during inter-glacial periods, increasing genetic differentiation 

from lower latitude populations, but then would retreat northwards during glacial periods, 

increasing contact and gene flow with lower latitude populations. 

 

Our finding that the strongest structuring in a global dataset of killer whales is between the 

ecotypes found around Antarctica (types B1, B2 and C) and all other killer whales counters 

claims by de Bruyn et al. (2013), that the Southern Ocean provides ‘complete and 

uninterrupted connectivity’ between Antarctic and Southern Hemisphere killer whales. Despite 

the apparent homogeneity of the Southern Ocean it harbours geographically structured 

populations of many species and is a hotbed for adaptation (see examples given in Rogers, 

2007 and Moon, Chown & Fraser, 2017). For example, pelagic versus coastal niche, and 

oceanographic fronts, shape the range, dispersal potential and consequently genetic structuring 

among Southern Ocean penguin populations (Clucas et al., 2018). Our findings of structure 

between Antarctic and all other killer whales, in addition to previous findings of structure 

between Antarctic types B1, B2 and C (Foote et al., 2016) are therefore consistent with 

patterns in other Antarctic taxa. Our findings make clear that, despite some connectivity, sub-

Antarctic and Antarctic killer whale populations should not be conflated. 

 

Ancient vicariance during a previous glacial cycle followed by more recent admixture is also 

inferred from the ancestry of the sympatric North Pacific mammal-eating transient ecotype and 

the fish-eating resident ecotype. The results from the PCA, PSMC and the D-statistics indicate 

more recent mean genome-wide coalescence and greater sharing of derived alleles and longer 

IBS tracts between the resident ecotype and most North Atlantic samples than between the 

transient ecotype and those same populations. We therefore infer that the resident ecotype 

shares a more recent common ancestor with these North Atlantic samples than does the 
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transient ecotype. Our finding that alleles derived in the transient are shared more commonly 

with the resident than with all non-Pacific samples suggests gene-flow within the North Pacific 

between residents and transients, as first inferred from Isolation with Migration analyses (IMa) 

of microsatellite genotypes by Hoelzel et al. (2007). Whilst this may appear to contradict long-

term observations of social isolation between the two ecotypes (Morton 1990; Baird & Dill, 

1995; Ford, 2009), gene flow via intermediary populations is supported by the f4-ratio test 

which identified Eastern Tropical Pacific samples and the offshore ecotype as having a mixture 

of transient and resident ancestry. Admixture may also be largely ancestral, rather than 

contemporary. The f3-statistic tests indicate greater drift relative to admixture in the resident, 

compared with the transient. In the PCA (Figure 1b), the segregation of samples along PC2 is 

driven by coalescence of shared genetic variation within the resident ecotype, i.e. lineage-

specific drift in the resident. Our resident samples originate from across the ecotype’s North 

Pacific range, from Washington State, USA to the Sea of Okhotsk off Eastern Russia. 

Therefore, the variation segregating in the resident ecotype and driving PC2 in Figure 1b must 

pre-date the separation into the several resident sub-populations which have subsequently 

colonised much of the Pacific rim (Filatova et al., 2018). If this drift in allele frequencies 

shared among residents occurred post-admixture with the transient ecotype, it would increase 

genetic differentiation between the two currently sympatric North Pacific ecotypes. Identifying 

introgressed haplotype lengths will be an important next step in unravelling this detail of the 

evolutionary history of killer whale ecotypes.  

 

This pattern of recurrent vicariance and subsequent admixture, likely corresponding to the 

cyclical expansion and contraction of high latitude habitat during the glacial cycles, contributes 

towards the genomic heterogeneity within an individual genome. Our results suggest that tracts 

originating from past vicariance during previous glacial cycles can be numerous and comprise 

a significant proportion of the genome. It is therefore important to consider such tracts in future 

analyses. For example, admixture between archaic hominin and modern Eurasian humans can 

inflate divergence time estimates between African and non-African populations (Alves et al., 

2012). Similarly, the genomes of the Antarctic killer whales represent at least two different 

demographic histories: the major ancestry component reflects a history in which the Antarctic 

types appear to be recently derived from other Southern Ocean populations; the minor ancestry 

reflects an ancient divergence that predates the TMRCA of most other killer whale lineages. 

Thus, the previous estimated TMRCA of 126–227 KYA (Foote et al., 2016) will be an average 

of the variation in TRMCA across the genome, thereby ignoring the true complexity of 
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vicariance and admixture among killer whale populations. Furthermore, depending upon the 

demographic and evolutionary history of these tracts, e.g. if they evolved in a locally adapted 

ancestral population or if the ancestral effective population size was small, they could harbour 

adaptive variation associated with this extreme Antarctic climate (as per Racimo et al., 2015) 

and/or weakly deleterious mutations (as per Harris & Nielsen, 2016; Juric, Aeschbacher & 

Coop, 2016). Thus, further research into the demographic and selective history of these archaic 

tracts is warranted. 

 

In summary, the global dataset of genomes analysed here contributes further to the emerging 

consensus (e.g. Arnold, 2016; Árnason et al., 2018; Gopalakrishnan et al., 2018; Malinsky 

et al., 2018; Sinding et al., 2018; Tusso et al., 2018) that the relationship among natural 

populations is rarely well represented as a bifurcating tree. The evolutionary history of natural 

populations can include episodic long-range dispersal, population replacement and admixture 

which greatly transform the distribution of global genetic variation. Furthermore, we highlight 

the importance of a phenomenon hitherto rarely considered in studies of non-human study 

organisms, that of archaic tracts within a genomic background with much younger TMRCA. 

Whilst past studies have simulated gene flow from unsampled ‘ghost’ populations (e.g. Wilson 

& Bernatchez, 1998; Beerli, 2004; Slatkin, 2005), by using tools previously primarily 

harnessed for the study of human population dynamics we highlight how genomic data can be 

leveraged to both identify the genomic regions derived from archaic and ghost populations and 

quantify their effect on contemporary population structure.  

 
 
 
  



 24 

ACKNOWLEDGEMENTS 
The sequencing service was provided by the Genomics Core Facility (GCF), Norwegian 
University of Science and Technology (NTNU). GCF is funded by the Faculty of Medicine 
and Health Sciences at NTNU and Central Norway Regional Health Authority. A.D.F. was 
supported by a short visit grant from the European Science Foundation–Research Networking 
Programme ConGenOmics and by a Swisss National Science Foundation grant (310030B-
166605) to L. Excoffier. We thank Laurits Skov for advice on the HMM method. We thank 
three anonymous reviewers and the editor for their feedback on an earlier version of this 
manuscript. 
 
 
DATA ACCESSIBILITY 
All sequencing data are archived at the National Center for Biotechnology Information, 
www.ncbi.nlm.nih.gov, or the European Nucleotide Archive, www.ebi.ac.uk/ena. Accession 
numbers are given in Supporting Information Table S1. 
 
 
AUTHOR CONTRIBUTIONS 
A.D.F. and P.A.M. conceived and coordinated the study.  A.D.F. analysed the data with input 
from L.E. and M.L.  A.D.F. wrote the manuscript with input from M.D.M, M.L., G.P., 
S.B.T., M.T.P.G., J.B.W.W and P.A.M.  A.R.A., R.W.B, C.S.B., L.B., J.B., A.B., T.C., R.C., 
W.D., L.D.R., N.J.D., J.W.D., R.E., S.H.F., T.G., C.G., M.B.H., W.H., C.J.D.M., F.I.P.S., 
R.d.S., S.B.T., P.T., J.A.T., P.W. were involved in sample collection.  K.R., G.P., M.D.M., 
M.H.S.S. were involved in DNA extraction, library preparation and sequencing. 
  
 
   



 25 

REFERENCES 

Alves, I., Hanulová, A. Š., Foll, M., & Excoffier, L. (2012). Genomic data reveal a complex 
making of humans. PLoS genetics, 8(7), e1002837. 

Árnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A., & Janke, A. (2018). Whole-genome 
sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. 
Science Advances, 4:eaap9873. 

Arnold, M. L. (2016). Divergence with genetic exchange. Oxford University Press, Oxford. 

Baird, R. W., & Dill, L. M. (1995). Occurrence and behaviour of transient killer whales: 
seasonal and pod-specific variability, foraging behaviour, and prey handling. Canadian 
Journal of Zoology, 73(7), 1300-1311. 

Barrett-Lennard, L. G. (2000). Population structure and mating patterns of killer whales 
(Orcinus orca) as revealed by DNA analysis (Doctoral dissertation, University of British 
Columbia). 

Beck, S., Foote, A. D., Koetter, S., Harries, O., Mandleberg, L., Stevick, P. T., ... & Durban, 
J. W. (2014). Using opportunistic photo-identifications to detect a population decline of killer 
whales (Orcinus orca) in British and Irish waters. Journal of the Marine Biological 
Association of the United Kingdom, 94, 1327-1333. 

Beerli, P. (2004). Effect of unsampled populations on the estimation of population sizes and 
migration rates between sampled populations. Molecular Ecology, 13(4), 827-836. 

Booth Jones, K. A., Nicoll, M. A., Raisin, C., Dawson, D. A., Hipperson, H., Horsburgh, G. 
J., ... & Tatayah, V. (2017). Widespread gene flow between oceans in a pelagic seabird 
species complex. Molecular ecology, 26(20), 5716-5728. 

Brawand, D., Wagner, C. E., Li, Y. I., Malinsky, M., Keller, I., Fan, S., ... & Di Palma, F. 
(2014). The genomic substrate for adaptive radiation in African cichlid fish. Nature, 513, 
375-381. 

de Bruyn, P. N., Tosh, C. A., & Terauds, A. (2013). Killer whale ecotypes: is there a global 
model? Biological Reviews, 88(1), 62-80. 

Cahill, J. A., Soares, A. E., Green, R. E., & Shapiro, B. (2016). Inferring species divergence 
times using pairwise sequential Markovian coalescent modelling and low‐coverage genomic 
data. Philosophical Transactions of the Royal Society of London. Series B, Biological 
Sciences, 371, pii: 20150138.  

Clucas, G. V., Younger, J. L., Kao, D., Emmerson, L., Southwell, C., Wienecke, B., ... & 
Hart, T. (2018). Comparative population genomics reveals key barriers to dispersal in 
Southern Ocean penguins. Molecular Ecology DOI: 10.1111/mec.14896  

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., ... & 
McKenna, A. (2011). A framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nature Genetics, 43(5), 491. 



 26 

Dornburg, A., Brandley, M. C., McGowen, M. R., & Near, T. J. (2011). Relaxed clocks and 
inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates 
across whales and dolphins (Mammalia: Cetacea). Molecular Biology and Evolution, 29(2), 
721-736. 

Dumont, B. L., & Payseur, B. A. (2008). Evolution of the genomic rate of recombination in 
mammals. Evolution: International Journal of Organic Evolution, 62(2), 276-294. 

Durand, E., Jay, F., Gaggiotti, O. E., & François, O. (2009). Spatial inference of admixture 
proportions and secondary contact zones. Molecular Biology and Evolution, 26(9), 1963-
1973. 

Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture 
between closely related populations. Molecular Biology and Evolution, 28(8), 2239-2252. 

Duranton, M., Allal, F., Fraïsse, C., Bierne, N., Bonhomme, F., & Gagnaire, P. A. (2018). 
The origin and remolding of genomic islands of differentiation in the European sea 
bass. Nature Communications, 9, 2518. 

Durban, J. W., Fearnbach, H., Burrows, D. G., Ylitalo, G. M., & Pitman, R. L. (2017). 
Morphological and ecological evidence for two sympatric forms of Type B killer whale 
around the Antarctic Peninsula. Polar Biology, 40(1), 231–236. 
https://doi.org/10.1007/s00300-016- 1942-x 

Esteban, R., Verborgh, P., Gauffier, P., Alarcón, D., Salazar-Sierra, J. M., Giménez, J., ... & 
de Stephanis, R. (2016). Conservation status of killer whales, Orcinus orca, in the Strait of 
Gibraltar. In Advances in Marine Biology (Vol. 75, pp. 141-172). Academic Press. 
 
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals 
using the software STRUCTURE: a simulation study. Molecular ecology, 14(8), 2611-2620. 

Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic consequences of range 
expansions. Annual Review of Ecology, Evolution, and Systematics, 40, 481-501. 

Excoffier, L., & Ray, N. (2008). Surfing during population expansions promotes genetic 
revolutions and structuration. Trends in Ecology & Evolution, 23, 347-351. 

Filatova, O. A., Borisova, E. A., Shpak, O. V., Meshchersky, I. G., Tiunov, A. V., 
Goncharov, A. A., ... Burdin, A. M. (2015). Reproductively isolated ecotypes of killer whales 
Orcinus orca in seas of the Russian far east. Biology Bulletin of the Russian Academy of 
Sciences, 42, 674–681. https://doi.org/10.1134/S1062359015070043  
 
Filatova, O. A., Borisova, E. A., Meschersky, I. G., Logacheva, M. D., Kuzkina, N. V., 
Shpak, O. V., ... & Hoyt, E. (2018). Colonizing the wild west: low diversity of complete 
mitochondrial genomes in western North Pacific killer whales suggests a founder 
effect. Journal of Heredity, 109(7), 735-743. 

Foote, A. D. (2012). Investigating ecological speciation in non-model organisms: a case 
study of killer whale ecotypes. Evolutionary Ecology Research, 14(4), 447-465. 



 27 

Foote, A. D. (2018). Sympatric speciation in the genomic era. Trends in Ecology & 
Evolution, 33, 85-95. 

Foote, A. D., Liu, Y., Thomas, G. W., Vinař, T., Alföldi, J., Deng, J., ... Gibbs, R. A. (2015). 
Convergent evolution of the genomes of marine mammals. Nature Genetics, 47(3), 272–275.  

Foote, A. D., & Morin, P. A. (2016). Genome-wide SNP data suggest complex ancestry of 
sympatric North Pacific killer whale ecotypes. Heredity, 117(5), 316. 
https://doi.org/10.1038/hdy.2016.54  

Foote, A. D., Vijay, N., Ávila-Arcos, M. C., Baird, R. W., Durban, J. W., Fumagalli, M., ... 
Wolf, J. B. W. (2016). Genome-culture coevolution promotes rapid divergence of killer 
whale ecotypes. Nature Communications, 7, 11693. https://doi.org/10.1038/ncomms11693 

Foote, A. D., Vilstrup, J. T., De Stephanis, R., Verborgh, P., Abel Nielsen, S. C., Deaville, 
R., ... & Piertney, S.B. (2011). Genetic differentiation among North Atlantic killer whale 
populations. Molecular Ecology, 20(3), 629-641.  

Ford, J. K. (2009). Killer whale: Orcinus orca. In Encyclopedia of marine mammals (2nd ed., 
pp. 650–657). San Diego, CA: Academic Press. https://doi.org/10.1016/B978-0-12-373553-
9.00150-4  

Ford, J. K., Ellis, G. M., Barrett-Lennard, L. G., Morton, A. B., Palm, R. S., & Balcomb, K. 
C. III (1998). Dietary specialization in two sympatric populations of killer whales (Orcinus 
orca) in coastal British Columbia and adjacent waters. Canadian Journal of Zoology, 76(8), 
1456–1471. https://doi.org/10.1139/z98-089  

Fraïsse, C., Belkhir, K., Welch, J. J., & Bierne, N. (2016). Local interspecies introgression is 
the main cause of extreme levels of intraspecific differentiation in mussels. Molecular 
Ecology, 25(1), 269-286. 

Frankham, R. (2015). Genetic rescue of small inbred populations: meta‐analysis reveals large 
and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610-2618. 

Gagnaire, P. A., Broquet, T., Aurelle, D., Viard, F., Souissi, A., Bonhomme, F., ... & Bierne, 
N. (2015). Using neutral, selected, and hitchhiker loci to assess connectivity of marine 
populations in the genomic era. Evolutionary Applications, 8, 769-786. 

Gilbert, K. J. (2016). Identifying the number of population clusters with structure: problems 
and solutions. Molecular Ecology Resources, 16(3), 601-603. 

Gompert, Z., Lucas, L. K., Fordyce, J. A., Forister, M. L., & Nice, C. C. (2010). Secondary 
contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture 
and a patchy hybrid zone. Molecular ecology, 19(15), 3171-3192. 

Gopalakrishnan, S., Sinding, M. H. S., Ramos-Madrigal, J., Niemann, J., Castruita, J. A. S., 
Vieira, F. G., ... & Gilbert, M.T.P. (2018). Interspecific gene flow shaped the evolution of the 
genus Canis. Current Biology, 28(21), 3441-3449. 



 28 

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., ... & Pääbo, S. 
(2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710-722. 

Guinet, C., & Tixier, P. (2011). Crozet killer whales: a remote but changing 
environment. Journal of the American Cetacean Society, 40, 33-38. 

Hoelzel, A. R., & Dover, G. A. (1991). Genetic differentiation between sympatric killer 
whale populations. Heredity, 66(2), 191. 

Hoelzel, A. R., Hey, J., Dahlheim, M. E., Nicholson, C., Burkanov, V., & Black, N. (2007). 
Evolution of population structure in a highly social top predator, the killer whale. Molecular 
Biology and Evolution, 24(6), 1407–1415.  

Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L., & Orlando, L. (2013). 
mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage 
parameters. Bioinformatics, 29(13), 1682-1684. 

Juric, I., Aeschbacher, S., & Coop, G. (2016). The strength of selection against Neanderthal 
introgression. PLoS genetics, 12(11), e1006340. 

Kelley, J. L., Brown, A. P., Therkildsen, N. O., & Foote, A. D. (2016). The life aquatic: 
advances in marine vertebrate genomics. Nature Reviews Genetics, 17, 523-534. 

Harris, K., & Nielsen, R. (2016). The genetic cost of Neanderthal introgression. Genetics, 
genetics-116. 

Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: analysis of next 
generation sequencing data. BMC bioinformatics, 15(1), 356. 

Lawson, D. J., van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-interpret 
STRUCTURE and ADMIXTURE bar plots. Nature Communications, 9(1), 3258. 

Lefort, V., Desper, R., & Gascuel, O. (2015). FastME 2.0: a comprehensive, accurate, and 
fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32(10), 
2798-2800. 

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows‐Wheeler 
transform. Bioinformatics, 25(14), 1754–1760.  

Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-
genome sequences. Nature, 475(7357), 493-496. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ...Durbin, R. (2009). 
The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.  

Malinsky, M., Svardal, H., Tyers, A. M., Miska, E. A., Genner, M. J., Turner, G. F., & 
Durbin, R. (2018). Whole genome sequences of malawi cichlids reveal multiple radiations 
interconnected by gene flow. Nature Ecol. Evol., 143859. 



 29 

Matkin, C. O., Barrett-Lennard, L. G., Yurk, H., Ellifrit, D., & Trites, A. W. (2007). Ecotypic 
variation and predatory behavior among killer whales (Orcinus orca) off the eastern Aleutian 
Islands, Alaska. Fishery Bulletin, 105(1), 74–88.  

Mazet, O., Rodriguez, W., Grusea, S., Boitard, S., & Chikhi, L. (2016). On the importance of 
being structured: Instantaneous coalescence rates and human evolution–lessons for ancestral 
population size inference? Heredity, 116, 362–371. 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., ... & 
DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for 
analyzing next-generation DNA sequencing data. Genome Research. 

McVean, G. (2009). A genealogical interpretation of principal components analysis. PLoS 
Genetics, 5(10), e1000686. 

Meier, J. I., Marques, D. A., Mwaiko, S., Wagner, C. E., Excoffier, L., & Seehausen, O. 
(2017). Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature 
Communications, 8, 14363. 

Meisner, J., & Albrechtsen, A. (2018). Inferring Population Structure and Admixture 
Proportions in Low Depth NGS Data. bioRxiv, 302463. 

Miyata, T., Hayashida, H., Kuma, K., Mitsuyasu, K., & Yasunaga, T. (1987). Male-driven 
molecular evolution: a model and nucleotide sequence analysis. In Cold Spring Harbor 
symposia on quantitative biology (Vol. 52, pp. 863-867). Cold Spring Harbor Laboratory 
Press. 

Moon, K. L., Chown, S. L., & Fraser, C. I. (2017). Reconsidering connectivity in the sub‐
Antarctic. Biological Reviews, 92(4), 2164-2181. 

Morin, P. A., Archer, F. I., Foote, A. D., Vilstrup, J., Allen, E. E., Wade, P., ...Harkins, T. 
(2010). Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus 
orca) indicates multiple species. Genome Research, 20(7), 908–916.  

Morin, P. A., Parsons, K. M., Archer, F. I., Ávila-Arcos, M. C., Barrett-Lennard, L. G., Dalla 
Rosa, L., … Foote, A. D. (2015). Geographic and temporal dynamics of a global radiation 
and diversification in the killer whale. Molecular Ecology, 24, 3964–3979.   

Morton, A. B. (1990). A quantitative comparison of the behaviour of resident and transient 
forms of the killer whale off the central British Columbia coast. Report of the International 
Whaling Commission (special issue 12), 245–248.  

Moura, A. E., Kenny, J. G., Chaudhuri, R. R., Hughes, M. A., Reisinger, R. R., De Bruyn, P. 
J. N., ... & Hoelzel, A. R. (2015). Phylogenomics of the killer whale indicates ecotype 
divergence in sympatry. Heredity, 114(1), 48-55. 

Novembre, J., & Stephens, M. (2008). Interpreting principal component analyses of spatial 
population genetic variation. Nature Genetics, 40, 646-649. 



 30 

Owens, G. L., Todesco, M., Drummond, E. B., Yeaman, S., & Rieseberg, L. H. (2018). A 
novel post hoc method for detecting index switching finds no evidence for increased 
switching on the Illumina HiSeq X. Molecular Ecology Resources, 18(1), 169-175. 

Pagani, L., Lawson, D. J., Jagoda, E., Mörseburg, A., Eriksson, A., Mitt, M., ...Metspalu, M. 
(2016). Genomic analyses inform on migration events during the peopling of 
Eurasia. Nature, 538(7624), 238-242. 

Parsons, K. M., Durban, J. W., Burdin, A. M., Burkanov, V. N., Pitman, R. L., Barlow, J., 
...Wade, P. R. (2013). Geographic patterns of genetic differentiation among killer whales in 
the northern North Pacific. Journal of Heredity, 104(6), 737–754.  

Patterson, N. J., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., ... & Reich, D. 
(2012). Ancient admixture in human history. Genetics, 192, 1065-1093. 

Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLoS 
Genetics, 2(12), e190. 

Peñalba, J. V., Joseph, L., Moritz, C. (2018). Current geography masks dynamic history of 
gene flow during speciation in northern Australian birds. Molecular Ecology 
https://doi.org/10.1111/mec.14978 

Peter, B. M. (2016). Admixture, population structure and F-statistics. Genetics 202, 1485-
1501. 

Pickrell, J. K., & Reich, D. (2014). Toward a new history and geography of human genes 
informed by ancient DNA. Trends in Genetics, 30, 377-389. 

Pitman, R. L., Perryman, W. L., LeRoi, D., & Eilers, E. (2007). A dwarf form of killer whale 
in Antarctica. Journal of Mammalogy, 88(1), 43-48. 

Pitman, R. L., & Durban, J. W. (2010). Killer whale predation on penguins in Antarctica. 
Polar Biology, 33(11), 1589–1594.  

Pitman, R. L., & Durban, J. W. (2012). Cooperative hunting behavior, prey selectivity and 
prey handling by pack ice killer whales (Orcinus orca), type B. Antarctic Peninsula waters. 
Marine Mammal Science, 28(1), 16–36.  

Pitman, R. L., & Ensor, P. (2003). Three forms of killer whales (Orcinus orca) in Antarctic 
waters. Journal of Cetacean Research and Management, 5(2), 131–140.  

Posth, C., Wißing, C., Kitagawa, K., Pagani, L., van Holstein, L., Racimo, F., ... & Krause, J. 
(2017). Deeply divergent archaic mitochondrial genome provides lower time boundary for 
African gene flow into Neanderthals. Nature Communications, 8, 16046. 

Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing 
genomic features. Bioinformatics, 26(6), 841–842.  

Racimo, F., Sankararaman, S., Nielsen, R., & Huerta-Sánchez, E. (2015). Evidence for 
archaic adaptive introgression in humans. Nature Reviews Genetics, 16, 359-371. 



 31 

Reich, D., Thangaraj, K., Patterson, N., Price, A. L., & Singh, L. (2009). Reconstructing 
Indian population history. Nature, 461(7263), 489. 

Riesch, R., Barrett-Lennard, L. G., Ellis, G. M., Ford, J. K., & Deecke, V. B. (2012). Cultural 
traditions and the evolution of reproductive isolation: ecological speciation in killer 
whales?. Biological Journal of the Linnean Society, 106, 1-17.  

Rogers, A. D. (2007). Evolution and biodiversity of Antarctic organisms: a molecular 
perspective. Philosophical Transactions of the Royal Society of London B: Biological 
Sciences, 362(1488), 2191-2214. 

Samarra, F. I. P., & Foote, A. D. (2015). Seasonal movements of killer whales between 
Iceland and Scotland. Aquatic Biology, 24(1), 75-79. 

Sankararaman, S., Patterson, N., Li, H., Pääbo, S., & Reich, D. (2012). The date of 
interbreeding between Neandertals and modern humans. PLoS Genetics, 8(10), e1002947. 

Saulitis, E., Matkin, C., Barrett-Lennard, L., Heise, K., & Ellis, G. (2000). Foraging 
strategies of sympatric killer whale (Orcinus orca) populations in Prince William Sound, 
Alaska. Marine Mammal Science, 16(1), 94–109.  

Seguin-Orlando, A., Korneliussen, T. S., Sikora, M., Malaspinas, A. S., Manica, A., Moltke, 
I., ... & Willerslev, E. (2014). Genomic structure in Europeans dating back at least 36,200 
years. Science, 346(6213), 1113-1118. 

Sinding, M. H. S., Gopalakrishan, S., Vieira, F. G., Castruita, J. A. S., Raundrup, K., 
Jørgensen, M. P. H., ... & Gilbert, M.T.P. (2018). Population genomics of grey wolves and 
wolf-like canids in North America. PLoS genetics, 14(11), e1007745. 

Sinha, R., Stanley, G., Gulati, G. S., Ezran, C., Travaglini, K. J., Wei, E., ... & Weissman, I. 
L. (2017). Index switching causes “spreading-of-signal” among multiplexed samples in 
Illumina HiSeq 4000 DNA sequencing. BioRxiv, 125724.  

Skotte, L., Korneliussen, T. S., & Albrechtsen, A. (2013). Estimating individual admixture 
proportions from next generation sequencing data. Genetics, 195, 693-702. 

Skov, L., Hui, R., Shchur, V., Hobolth, A., Scally, A., Schierup, M. H., & Durbin, R. (2018). 
Detecting archaic introgression using an unadmixed outgroup. PLoS Genetics, 14(9), 
e1007641. 

Slatkin, M. (2005). Seeing ghosts: the effect of unsampled populations on migration rates 
estimated for sampled populations. Molecular Ecology, 14(1), 67-73. 

Sousa, V., & Hey, J. (2013). Understanding the origin of species with genome-scale data: 
modelling gene flow. Nature Reviews Genetics, 14, 404-413. 

Taylor, B. L., Chivers, S. J., Larese, J., & Perrin, W. F. (2007). Generation length and percent 
mature estimates for IUCN assessments of cetaceans. Administrative Report LJ, 07-01.| 
 



 32 

Tracy, C. A., & Widom, H. (1994). Level-spacing distributions and the Airy 
kernel. Communications in Mathematical Physics, 159(1), 151-174. 
 
Tusso, S., Nieuwenhuis, B. P., Sedlazeck, F. J., Davey, J. W., Jeffares, D., & Wolf, J. B. 
(2018). Ancestral admixture and structural mutation define global biodiversity in fission 
yeast. bioRxiv, 415091. 

van der Valk, T., Vezzi, F., Ormestad, M., Dalén, L., & Guschanski, K. (2019). Index 
hopping on the Illumina HiseqX platform and its consequences for ancient DNA studies. 
Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13009 

Vieira, F. G., Lassalle, F., Korneliussen, T. S., & Fumagalli, M. (2015). Improving the 
estimation of genetic distances from Next-Generation Sequencing data. Biological journal of 
the Linnean Society, 117(1), 139-149. 

Wang, L., Zhang, W., Li, Q., Zhu, W., & Wang, M. L. (2017). Package ‘AssocTests’. 

Wilson, C. C., & Bernatchez, L. (1998). The ghost of hybrids past: fixation of arctic charr 
(Salvelinus alpinus) mitochondrial DNA in an introgressed population of lake trout (S. 
namaycush). Molecular Ecology, 7(1), 127-132.  



 33 

Figure Legends 

Figure 1  (a) Sampling locations of the individuals for which twenty-six 5´ coverage genomes 
were generated (global dataset). Marker colours are as per the PCA legend. An additional 
twenty low coverage genomes (ecotype dataset) were used in some analyses, see Foote et al. 
(2016) for sampling locations. (b) PCA plots of the combined global and ecotype datasets, and 
(c) the global dataset (one sample per population). (d) Individual admixture proportions, 
conditional on the number of genetic clusters (K=2 and K=3), for the combined global and 
ecotype datasets, and for (K=2) (e) when only one 5´ coverage genome per population from 
the global dataset is included.  

 
Figure 2 (a) Model of hypothesised demographic scenario. Approximately 80% of the ancestry 
of type B2 has a mean time to most recent common ancestor (TMRCA) of 2,500 generations 
with the outgroup samples (TIngroup), whilst 20% of the ancestry of type B2 is in short segments 
(5-6 kb) with a TMRCA of 10,000 generations with the outgroup samples (TArchaic). We 
therefore propose lineage sorting of ancestral structure subsequent to TArchaic, so that 
ancestry represented by red shading was not found in the most recent common ancestor of 
the outgroup and type B2. After TIngroup, the red shaded ancestry introgressed into the 
ancestor of type B2, but not the outgroup, from an unsampled ‘archaic’ source lineage. Figure 
is adapted from Figure 1a of Skov et al. (2018) and Figure 1 of Racimo et al. (2015). Shading 
represents the decreasing length of the archaic (red) ancestry tracts through the action of 
recombination. (b) PCA plot based on 8,888 1 kb windows of the 41Mb autosomal scaffold 
(KB316842.1) inferred as archaic in the type B2 killer whale. These regions contained a total 
of 25,208 SNPs, of which 4,406 were alleles private to type B2 compared with the outgroup 
dataset used in the HMM. Note that due to linkage, these are not all independent 
observations. PC1 was the only significant component (P > 0.001) and explained of 18.3% of 
the variation in the data. Antarctic and outgroup samples used in the HMM analysis are 
indicated by bold labelled markers, putative admixed samples excluded from the HMM 
analysis are indicated by regular labelled markers. 
 

Figure 3  Pairwise sequentially Markovian coalescent (PSMC) plots of changes in coalescence 
rates between haploid male X-chromosomes combined to construct pseudo-diploid X-
chromosomes. (a) A schematic diagram of the accumulations of mutations (indicated by 
circles) in two populations which are initially connected by gene flow, but diverge without 
further gene flow at the time indicated by the dashed line. A pseudo-diploid comprised of 
haploid chromosomes from Pop1 and Pop2 can be homozygous for the derived alleles at 
mutations when there is gene flow and recombination (indicated by yellow stars) between 
Pop1 and Pop2. Mutations accumulated after the cessation of gene flow will remain private 
to Pop1 or Pop2 and therefore inferred as heterozygotes in the pseudo-diploid. The 
accumulation and distribution of heterozygotes in the pseudo-diploid breaks up homozygous 
tracts which PSMC infers as a decrease in the coalescence rate. Therefore, the exponential 
upsweep towards infinity on the y-axis of the PSMC plot of a pseudo-diploid genome provides 
a coarse measure of divergence time. (b) The haploid X-chromosome of a male resident (red) 
and a male transient (blue) are combined with haploid X-chromosomes of males from the 
global dataset: Gabon, Gibraltar, New Zealand, North Pacific offshore ecotype, Eastern 
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Tropical Pacific (ETP)–Clipperton Island, Iceland, Gulf of Mexico, Brazil, Southern Ocean, SW 
Australia, Chatham Islands, Crozet Archipelago, Hawaii, ETP–Mexico, and W. Australia. Each 
pseudo-diploid is represented by a separate plot. (c) PSMC plots of pseudo-diploid X-
chromosome constructed from the haploid X-chromosome of either a male type B1 
(aubergine) or a male type C (orange) together with the haploid X-chromosome of a global 
sample (as for panel b). The plot of the combined B1-C pseudo-diploid X-chromosome is 
shown in black and shown separately in (d) with the thick black line representing the median 
and thin grey lines corresponding to 100 rounds of bootstrapping. Inverse coalescence rate is 
scaled by 2μ. 

 
Figure 4  (a) Samples on the map are coloured by the value of D(type B2, type C; X, dolphin). 
The nineteen highest positive statistics were considered statistically significant following 
correction for multiple testing, based on Z-scores >3. This indicates that in these nineteen 
tests X shares an excess of derived alleles with Antarctic type C relative to type B2. Standard 
errors are shown as horizontal bars on the markers in the plot to the right.  (b) Estimates of 
D(resident, transient; X, dolphin), in which the sixteen most negative statistics were 
considered statistically significant following correction for multiple testing, based on Z-scores 
< -3. This indicates that in these sixteen tests X shares an excess of derived alleles with the 
North Pacific resident ecotype relative to the North Pacific transient ecotype. Standard errors 
are shown as horizontal bars on the markers in the plot to the right.  (c) A comparison of D(X, 
resident; transient, dolphin) and D(X, transient; resident, dolphin). Negative values along the 
x-axis indicate samples which shared an excess of derived alleles with the transient ecotype. 
Negative values along the y-axis indicate samples which shared an excess of derived alleles 
with the resident ecotype. 
 
Figure 5  F3-statistics of the form f3(ecotype; X, Y), showing f3(type B2; X, Y) in the upper 
diagonal and f3(transient; X, Y) in the lower diagonal. The negative values for f3(transient; X, 
Y) indicate that the transient ecotype is highly admixed by X and/or Y, or population(s) 
closely related to them. The positive values for f3(type B2; X, Y) indicate that post-admixture 
drift in type B2 from X and Y is greater than any admixture with X or Y, with the exception of 
when X or Y are type B1 or type C.  
 


