2,052 research outputs found

    Decomposition of fractional quantum Hall states: New symmetries and approximations

    Full text link
    We provide a detailed description of a new symmetry structure of the monomial (Slater) expansion coefficients of bosonic (fermionic) fractional quantum Hall states first obtained in Ref. 1, which we now extend to spin-singlet states. We show that the Haldane-Rezayi spin-singlet state can be obtained without exact diagonalization through a differential equation method that we conjecture to be generic to other FQH model states. The symmetry rules in Ref. 1 as well as the ones we obtain for the spin singlet states allow us to build approximations of FQH states that exhibit increasing overlap with the exact state (as a function of system size). We show that these overlaps reach unity in the thermodynamic limit even though our approximation omits more than half of the Hilbert space. We show that the product rule is valid for any FQH state which can be written as an expectation value of parafermionic operators.Comment: 22 pages, 8 figure

    The Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States

    Full text link
    We deduce a new set of symmetries and relations between the coefficients of the expansion of Abelian and Non-Abelian Fractional Quantum Hall (FQH) states in free (bosonic or fermionic) many-body states. Our rules allow to build an approximation of a FQH model state with an overlap increasing with growing system size (that may sometimes reach unity!) while using a fraction of the original Hilbert space. We prove these symmetries by deriving a previously unknown recursion formula for all the coefficients of the Slater expansion of the Laughlin, Read Rezayi and many other states (all Jacks multiplied by Vandermonde determinants), which completely removes the current need for diagonalization procedures.Comment: modify comment in Ref. 1

    Denial-of-service resilience in peer-to-peer file sharing systems

    Get PDF
    Peer-to-peer (p2p) file sharing systems are characterized by highly replicated content distributed among nodes with enormous aggregate resources for storage and communication. These properties alone are not sufficient, however, to render p2p networks immune to denial-of-service (DoS) attack. In this paper, we study, by means of analytical modeling and simulation, the resilience of p2p file sharing systems against DoS attacks, in which malicious nodes respond to queries with erroneous responses. We consider the filetargeted attacks in current use in the Internet, and we introduce a new class of p2p-network-targeted attacks. In file-targeted attacks, the attacker puts a large number of corrupted versions of a single file on the network. We demonstrate that the effectiveness of these attacks is highly dependent on the clients’ behavior. For the attacks to succeed over the long term, clients must be unwilling to share files, slow in removing corrupted files from their machines, and quick to give up downloading when the system is under attack. In network-targeted attacks, attackers respond to queries for any file with erroneous information. Our results indicate that these attacks are highly scalable: increasing the number of malicious nodes yields a hyperexponential decrease in system goodput, and a moderate number of attackers suffices to cause a near-collapse of the entire system. The key factors inducing this vulnerability are (i) hierarchical topologies with misbehaving “supernodes,” (ii) high path-length networks in which attackers have increased opportunity to falsify control information, and (iii) power-law networks in which attackers insert themselves into high-degree points in the graph. Finally, we consider the effects of client counter-strategies such as randomized reply selection, redundant and parallel download, and reputation systems. Some counter-strategies (e.g., randomized reply selection) provide considerable immunity to attack (reducing the scaling from hyperexponential to linear), yet significantly hurt performance in the absence of an attack. Other counter-strategies yield little benefit (or penalty). In particular, reputation systems show little impact unless they operate with near perfection

    On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures

    Full text link
    This note, mostly expository, is devoted to Poincar{\'e} and log-Sobolev inequalities for a class of Boltzmann-Gibbs measures with singular interaction. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from convexity. We prove and characterize optimality in the case of quadratic confinement via a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gaussian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics admitting the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the consequence of the log-Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.Comment: Minor improvements. To appear in Geometric Aspects of Functional Analysis -- Israel Seminar (GAFA) 2017-2019", Lecture Notes in Mathematics 225

    Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    Get PDF
    Citation: Ablikim, U., Bomme, C., Xiong, H., Savelyev, E., Obaid, R., Kaderiya, B., . . . Rolles, D. (2016). Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging. Scientific Reports, 6, 8. doi:10.1038/srep38202An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model

    Asymptotics for products of characteristic polynomials in classical β\beta-Ensembles

    Full text link
    We study the local properties of eigenvalues for the Hermite (Gaussian), Laguerre (Chiral) and Jacobi β\beta-ensembles of N×NN\times N random matrices. More specifically, we calculate scaling limits of the expectation value of products of characteristic polynomials as NN\to\infty. In the bulk of the spectrum of each β\beta-ensemble, the same scaling limit is found to be ep11F1e^{p_{1}}{}_1F_{1} whose exact expansion in terms of Jack polynomials is well known. The scaling limit at the soft edge of the spectrum for the Hermite and Laguerre β\beta-ensembles is shown to be a multivariate Airy function, which is defined as a generalized Kontsevich integral. As corollaries, when β\beta is even, scaling limits of the kk-point correlation functions for the three ensembles are obtained. The asymptotics of the multivariate Airy function for large and small arguments is also given. All the asymptotic results rely on a generalization of Watson's lemma and the steepest descent method for integrals of Selberg type.Comment: [v3] 35 pages; this is a revised and enlarged version of the article with new references, simplified demonstations, and improved presentation. To be published in Constructive Approximation 37 (2013

    Spectral Properties of the Jacobi Ensembles via the Coulomb Gas approach

    Full text link
    Using the Coulomb gas method and standard methods of statistical physics, we compute analytically the joint cumulative probability distribution of the extreme eigenvalues of the Jacobi-MANOVA ensemble of random matrices, in the limit of large matrices. This allows us to derive the rate functions for the large fluctuations to the left and the right of the expected values of the smallest and largest eigenvalues analytically. Our findings are compared with some available known exact results as well as with numerical simulations finding good agreement.Comment: 31 pages, 7 figure

    A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    Full text link
    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully emulates the experimental findings of Perea & Araque (2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to appear

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore